Quantitative T2 mapping-based tendon healing is related to the clinical outcomes during the first year after arthroscopic rotator cuff repair.

Knee Surg Sports Traumatol Arthrosc

Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Middle Wulumuqizhong Road, Shanghai, 200040, China.

Published: January 2021

Purpose: The objective of this study was to determine the correlation between quantitative T2 mapping-based tendon healing and clinical outcomes during the first year after arthroscopic rotator cuff repair.

Methods: Twenty-two patients with rotator cuff tear were prospectively recruited. Serial clinical and MRI follow-up assessments were carried out at 1 month, 6 months and 12 months after surgery. Twenty healthy volunteers were involved and were examined with clinical and MRI assessments. Clinical assessments included Constant Score (CS), the American Shoulder and Elbow Surgeons (ASES), the modified University of California, Los Angles (UCLA) scores and Visual Analog Scale (VAS). The region of interest of tendon healing was defined directly over the medial suture anchor on T2 mapping. Spearman correlation coefficient was used to analyze the correlations between MRI measurements and clinical outcomes.

Results: All clinical scores indicated significant improvements over the postoperative observation period compared with the initial preoperative values (all P < 0.001). At 12 months, all of the patients returned to their daily life activities. The T2 values of the healing site significantly decreased over time (P < 0.001) and were comparable to those of healthy tendons at 12 months (n.s.). Additionally, the T2 values were negatively correlated with CS (r = - 0.5, P < 0.001), ASES (r = - 0.5, P < 0.001), and UCLA (r = - 0.5, P < 0.001); and positively correlated with VAS score (r = 0.4, P < 0.001). No significant correlations were found between Sugaya classification and clinical scores (all n.s.).

Conclusions: With regard to tendon healing during the first follow-up year, the T2 values of the healing site decreased with the improvement of clinical outcomes over time.

Level Of Evidence: II.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-019-05811-wDOI Listing

Publication Analysis

Top Keywords

tendon healing
12
rotator cuff
12
quantitative mapping-based
8
mapping-based tendon
8
healing clinical
8
clinical outcomes
8
outcomes year
8
year arthroscopic
8
arthroscopic rotator
8
clinical mri
8

Similar Publications

Image-guided Interventions for Core Muscle Injury and Other Disorders in the Pubic Symphysis.

Radiographics

February 2025

Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).

Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.

View Article and Find Full Text PDF

Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.

View Article and Find Full Text PDF

Mechanisms and new advances in the efficacy of plant active ingredients in tendon-bone healing.

J Orthop Surg Res

January 2025

The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.

The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.

View Article and Find Full Text PDF

Biodegradable Temporizing Matrix in Postoncological Scalp Reconstruction: A Case Series.

Plast Reconstr Surg Glob Open

January 2025

From the Department of Plastic Surgery, Hull University Teaching Hospitals, East Riding of Yorkshire, United Kingdom.

Biodegradable temporizing matrix (BTM) is a synthetic biodegradable dermal matrix that helps develop a non-skin graft amenable wound bed (eg, over tendon or bone) into a graftable wound bed, by acting as an inert scaffold for angiogenesis and formation of granulation tissue. There is currently a paucity of evidence to encourage its use in scalp defects following skin malignancy excision. This retrospective analysis aimed to evaluate the utility of BTM in this patient subset.

View Article and Find Full Text PDF

An Aligned-to-Random PLGA/Col1-PLGA/nHA Bilayer Electrospun Nanofiber Membrane Enhances Tendon-to-Bone Healing in a Murine Model.

Am J Sports Med

January 2025

Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China.

Background: The challenge of achieving effective tendon-to-bone healing remains a significant concern in sports medicine, necessitating further exploration. Biomimetic electrospun nanomaterials present promising avenues for improving this critical healing process.

Purpose: To investigate the biological efficacy of a novel aligned-to-random PLGA/Col1-PLGA/nHA bilayer electrospun nanofiber membrane in facilitating tendon-to-bone healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!