Bi(OAc)/chiral phosphoric acid catalyzed enantioselective allylation of isatins.

Chem Commun (Camb)

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Published: December 2019

Herein, we disclosed an efficient protocol for the construction of chiral 3-allyl-3-hydroxyoxindoles via the enantioselective allylation reaction of isatins and allylboronates catalyzed by a simple binary acid Bi(OAc)3/CPA system under mild conditions. The synthetic utility of this strategy has been demonstrated through the formal synthesis of ent-CPC-1.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc07944kDOI Listing

Publication Analysis

Top Keywords

enantioselective allylation
8
bioac/chiral phosphoric
4
phosphoric acid
4
acid catalyzed
4
catalyzed enantioselective
4
allylation isatins
4
isatins disclosed
4
disclosed efficient
4
efficient protocol
4
protocol construction
4

Similar Publications

The absolute and relative configurations of bioactive chiral molecules are typically relevant to their biological properties. It is thus highly important and desirable to construct all possible stereoisomers of a lead candidate or a given bioactive natural compound. Synergistic dual catalysis has been recognized as a reliable synthetic strategy for a variety of predictable stereodivergent transformations.

View Article and Find Full Text PDF

Enantioselective Heck/Tsuji-Trost reaction of flexible vinylic halides with 1,3-dienes.

Nat Commun

January 2025

College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.

The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.

View Article and Find Full Text PDF

Palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles.

Org Biomol Chem

January 2025

Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.

A novel palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles is described. A variety of new 3-carboxamide-3-allylation oxindoles with an all-carbon quaternary center were obtained in moderate to good yields (up to 99%). In addition, the asymmetric version of this reaction was also explored, providing moderate enantioselectivity.

View Article and Find Full Text PDF

Regio- and Enantioselective Rhodium-Catalyzed Allylic Arylation of Racemic Allylic Carbonates with Arylboronic Acids.

Angew Chem Int Ed Engl

January 2025

New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.

Rhodium-catalyzed regio- and enantioselective allylic arylation of racemic alkyl- and aryl- substituted allylic carbonates with arylboronic acids using commercially available BIBOP ligand is reported. This reaction proceeds at room temperature without base or other additive to deliver allylic arylation products in excellent yields, regio- and enantioselectivity (up to 95 % yield, >20 : 1 b/l, >99 % ee). Rh/BIBOP is disclosed as an efficient catalytic system for allylic substitution reaction.

View Article and Find Full Text PDF

The Pd-catalyzed asymmetric hydrogenolysis rearrangement of allylic acetates using (s-Bu)BHK has been described, achieving the synthesis of axially chiral alkylidene cycloalkanes with excellent enantioselectivities (up to 99 % ee) and a wide substrate scope (30 examples of cyclohexanes and cyclobutanes). To the best of our knowledge, this is the first time to achieve synthesis of axially chiral olefins via asymmetric hydrogenolysis of allylic acetates. This methodology not only offers a novel synthetic pathway for non-atropisomeric axially chiral structures but also highlights the potential of asymmetric hydrogenolysis as a powerful tool in synthetic organic chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!