Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Head and neck squamous cell carcinoma (HNSCC), one of the most common malignant tumors, endangers human health. Recently, the incidence of HNSCC has kept increasing: However, its prognosis has not significantly improved. Understanding the molecular mechanism underlying HNSCC development will therefore provide new strategies for therapy. The present study attempted to identify differentially expressed (DE) long non-coding (lnc)RNAs and investigated their functional role in HNSCC development. Expression profiles of HNSCC and normal samples were downloaded from The Cancer Genome Atlas (TCGA) database. DElncRNAs between the HNSCC and normal samples were highlighted and their potential functions were investigated through lncRNA-micro (mi)RNA-mRNA network by using Gene Expression Profiling Interactive Analysis, UALCAN, DIANA-LncBase v.2 and miRWalk 3.0 databases. A total of 343 dysregulated lncRNAs were identified. Among these DElncRNAs, CTD-2357A8.3 had the highest fold-change and was significantly associated with poor overall survival in patients with HNSCC. Furthermore, CTD-2357A8.3 was associated with 'signaling pathways regulating stem cell pluripotency', 'proteoglycans in cancer', 'transcriptional misregulation in cancer' and 'chemokine signaling pathway'. Further analysis demonstrated that CTD-2357A8.3 acted as a 'sponge' in order to competitively adsorb miRNA to regulate the expression of target gene caveolin 1 () in HNSCC. In conclusion, CTD-2357A8.3 may be considered a promising diagnosis biomarker or a therapeutic target for the treatment of HNSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876322 | PMC |
http://dx.doi.org/10.3892/ol.2019.10920 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!