Polyurethane/Halloysite Nantubes nanocomposites containing 1 wt.% nanoparticles were prepared using in situ polymerization method with different mixing sequences. Various experiments have been performed in order to evaluate the effect of nanoparticle dispersion and the different orders of mixing of the samples on the mechanical properties and morphology of nanocomposites. The results obtained from the ATR-FTIR test demonstrated that the presence of nanoparticles led to an increase in phase separation, and the sample with the best nanoparticle dispersion has shown more phase separation than the other samples. Furthermore, the results of the Differential scanning calorimetry (DSC) also confirmed more phase separation and the crystallinity of the samples in the presence of nanoparticles. Scanning electron microscope (SEM) images were utilized in order to investigate the dispersion of nanoparticles in polyurethane matrix and to examine surface fracture of the samples. Moreover, differential mechanical thermal analysis (DMTA) revealed that the presence of nanoparticles has altered the glass transition temperature of polymers, and there are physical and chemical interaction and hydrogen bonding between nanoparticles and hard and soft polyurethane segments. In addition, in the presence of nanoparticles the damping of the samples was reduced compared to the neat sample. Change in behavior from liquid like to solid like in the range of low angular frequencies was observed which is in agreement with the formation of a network structure that can be broken even at low shear rates. In the second step, kinetics of the phase separation process of thermoplastic polyurethane and nanocomposites was studied by rheological experiments. The results showed that the kinetics of phase separation process of thermoplastic polyurethane is similar to that of the crystallization process. Phase separation kinetics of neat samples and nanocomposite have been studied. The presence of nanoparticles by nucleation mechanism increased the rate of the phase separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882454PMC
http://dx.doi.org/10.1080/15685551.2019.1687083DOI Listing

Publication Analysis

Top Keywords

phase separation
28
presence nanoparticles
20
nanoparticles
8
nanoparticle dispersion
8
samples differential
8
kinetics phase
8
separation process
8
process thermoplastic
8
thermoplastic polyurethane
8
phase
7

Similar Publications

Cascade of phase transitions in a dipeptide supramolecular assembly triggered by a single fatty acid.

Colloids Surf B Biointerfaces

December 2024

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,  China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Significant progress has been achieved with diversity of short peptide supramolecular assemblies. However, their programmable phase modulation by single stimulus remains a great challenge. Herein, we demonstrate a dipeptide supramolecular system undergoes sequentially coupled phase transitions upon hydrogen bonding association and dissociation triggered by a single fatty acid.

View Article and Find Full Text PDF

Electro-assisted solid-phase microextraction of Hg(II) in rice and water samples using NiCo-LDH-MXene fiber.

Food Chem

December 2024

Electroanalytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran. Electronic address:

Food and water contamination with heavy metals is still a significant public health issue, necessitating development of simple and rapid analytical methods. Herein, a novel electro-assisted solid-phase microextraction (EA-SPME) method was developed to determine mercury (Hg(II)) in rice and water samples. A novel SPME-fiber coating was prepared through electrosynthesis of NiCo-layered double hydroxide (NiCo-LDH) onto MXene deposited onto the graphenized pencil fiber.

View Article and Find Full Text PDF

Imaged capillary isoelectric focusing was successfully applied for separating an in-house synthesized closely related peptide pair, that is, a linear 12-mer (Rp5-L) and its cyclic 15-mer variant (Rp5-C). Rp5-L represents a mimotope, that is, an epitope mimicking peptide, of the CD20 antigen, which is over-expressed in B-cell-related tumors. Peptide identity-including the successful disulfide bond formation in Rp5-C-was confirmed with matrix-assisted laser desorption ionization-time of flight mass spectrometry.

View Article and Find Full Text PDF

Comprehensive Optimization of Packing Parameters for Hydraulic-Packed Capillary Columns.

Rapid Commun Mass Spectrom

April 2025

Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, China.

Rationale: The performance of the capillary column directly impacts the separation efficiency of complex sample in liquid chromatography-mass spectrometry-based proteomics studies. The hydraulic packing system offers an effective solution by reducing packing time and expediting the preparation process of column preparation. However, its operational complexity and strict parameter regulation requirements hinder efficient application.

View Article and Find Full Text PDF

In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!