Blocking TGF-β Signaling To Enhance The Efficacy Of Immune Checkpoint Inhibitor.

Onco Targets Ther

Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.

Published: November 2019

During malignant transformation, a growing body of mutations accumulate in cancer cells which not only drive cancer progression but also endow cancer cells with high immunogenicity. However, because one or multiple steps in cancer-immunity cycle are impaired, anti-cancer immune response is too weak to effectively clear cancer cells. Therefore, how to restore robust immune response to malignant cells is a hot research topic in cancer therapeutics field. In the last decade, based on the deeper understanding of cancer immunity, great signs of progress have been made in cancer immunotherapies especially immune checkpoint inhibitors (ICIs). ICIs could block negative immune co-stimulatory pathways and reactivate tumor-infiltrating lymphocytes (TILs) from exhausted status. ICIs exhibit potent anti-cancer effect and have been approved for the treatment of numerous cancer types. Parallel with durable and effective tumor control, the actual response rate of ICIs is unsatisfactory. Although a subset of patients benefit from ICIs treatment, a large proportion of patients show primary or acquired resistance. Previously intensive studies indicated that the efficacy of ICIs was determined by a series of factors including tumor mutation burden, programmed death ligand-1 (PD-L1) expression, and TILs status. Recently, it was reported that transforming growth factor-beta (TGF-β) signaling pathway participated in cancer immune escape and ICI resistance. Concurrent TGF-β blockade might be a feasible strategy to enhance the efficacy of immunotherapy and relieve ICI resistance. In this mini-review, we summarized the latest understanding of TGF-β signaling pathway and cancer immunity. Besides, we highlighted the synergistic effect of TGF-β blockade and ICIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857659PMC
http://dx.doi.org/10.2147/OTT.S224013DOI Listing

Publication Analysis

Top Keywords

tgf-β signaling
12
cancer cells
12
cancer
10
enhance efficacy
8
immune checkpoint
8
immune response
8
cancer immunity
8
signaling pathway
8
ici resistance
8
tgf-β blockade
8

Similar Publications

Novel nutrition strategies in gastric and esophageal cancer.

Expert Rev Gastroenterol Hepatol

January 2025

Department of Surgery, Trinity St. James's Cancer Institute, Dublin, Ireland.

Introduction: Advances in treatment strategies for gastric and esophageal cancer have led to improved long-term outcomes, however the local and systemic effects of tumor growth, neoadjuvant therapies and surgery, results in specific nutritional challenges. Comprehensive nutritional evaluation and support represents a core component of multidisciplinary holistic care for this patient population.

Areas Covered: This review provides a detailed overview of the nutritional challenges in gastric and esophageal cancer, with a focus on malignant obstruction, preoperative optimization and nutrition in survivorship.

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

Mina53 catalyzes arginine demethylation of p53 to promote tumor growth.

Cell Rep

January 2025

Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China. Electronic address:

Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase.

View Article and Find Full Text PDF

Cytosolic DNA composition is determined by genomic instability mechanism and regulates dendritic cell-mediated anti-tumor immunity.

Cell Rep

January 2025

Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada. Electronic address:

Patients with colorectal cancers (CRCs) that have microsatellite instability (MSI) (MSI CRCs) face a better prognosis than those with the more common chromosomal instability (CIN) subtype (CIN CRCs) due to improved T cell-mediated anti-tumor immune responses. Previous investigations identified the cytosolic DNA (cyDNA) sensor STING as necessary for chemokine-mediated T cell recruitment in MSI CRCs. Here, we find that cyDNA from MSI CRC cells is inherently more capable of inducing STING activation and improves cytotoxic T cell activation by dendritic cells (DCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!