Changes in Greenland's marine-terminating outlet glaciers have led to changes in the flux of icebergs into Greenland's coastal waters, yet icebergs remain a relatively understudied component of the ice-ocean system. We developed a simple iceberg delineation algorithm for Landsat imagery. A machine learning-based cloud mask incorporated into the algorithm enables us to extract iceberg size distributions from open water even in partially cloudy scenes. We applied the algorithm to the Landsat archive covering Disko Bay, West Greenland, to derive a time series of iceberg size distributions from 2000-02 and 2013-15. The time series captures a change in iceberg size distributions, which we interpret as a result of changes in the calving regime of the parent glacier, Sermeq Kujalleq (Jakobshavn Isbræ). The change in calving style associated with the disintegration and disappearance of Sermeq Kujalleq's floating ice tongue resulted in the production of more small icebergs. The increased number of small icebergs resulted in increasingly negative power law slopes fit to iceberg size distributions in Disko Bay, suggesting that iceberg size distribution time series provide useful insights into changes in calving dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894398PMC
http://dx.doi.org/10.1017/jog.2019.23DOI Listing

Publication Analysis

Top Keywords

iceberg size
20
size distributions
16
disko bay
12
time series
12
open water
8
bay west
8
west greenland
8
algorithm landsat
8
changes calving
8
small icebergs
8

Similar Publications

The Arctic warming leads to a decline in sea-ice extent and thickness, rapid warming and freshening of the sea surface which impact the distribution of phytoplankton size composition. Picophytoplankton is an ecologically important component of Arctic pelagic marine ecosystems, and its role may be altered by global warming. In this study, the abundance and biomass, the chlorophyll a (Chl-a) and primary production (PP) of picophytoplankton, and its spatial and temporal distribution were investigated in the Kara Sea during the ice-melt season in July 2019.

View Article and Find Full Text PDF

A tip of the iceberg: genome survey indicated a complex evolutionary history of Garuga Roxb. species.

BMC Genomics

October 2024

Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, National Plateau Wetlands Research Center, Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Southwest Forestry University, Kunming, 650224, PR, China.

BACKGROUND : Garuga Roxb. is a genus endemic to southwest China and other tropical regions in Southeast Asia facing risk of extinction due to the loss of tropical forests and changes in land use. Conducting a genome survey of G.

View Article and Find Full Text PDF

Disentangling the influences of climate change from other stressors affecting the population dynamics of aquatic species is particularly pressing for northern latitude ecosystems, where climate-driven warming is occurring faster than the global average. Chinook salmon (Oncorhynchus tshawytscha) in the Yukon-Kuskokwim (YK) region occupy the northern extent of their species' range and are experiencing prolonged declines in abundance resulting in fisheries closures and impacts to the well-being of Indigenous people and local communities. These declines have been associated with physical (e.

View Article and Find Full Text PDF

This study investigated the changes in sea ice temperature, microalgae species distribution, shape changes, and photosynthetic activity observed in the first-year ice that forms in winter in Saroma-ko Lagoon, Hokkaido, Japan. Temperatures at the bottom of the ice remained constant at -1.7°C, near the freezing point, while they varied between -6 and -1°C with diel fluctuations at the surface layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!