Ultrasonically assisted synthesis of barium stannate incorporated graphitic carbon nitride nanocomposite and its analytical performance in electrochemical sensing of 4-nitrophenol.

Ultrason Sonochem

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India. Electronic address:

Published: April 2020

We describe the ultrasonic assisted preparation of barium stannate-graphitic carbon nitride nanocomposite (BSO-gCN) by a simple method and its application in electrochemical detection of 4-nitrophenol via electro-oxidation. A bath type ultrasonic cleaner with ultrasonic power and ultrasonic frequency of 100 W and 50 Hz, respectively, was used for the synthesis of BSO-gCN nanocomposite material. The prepared BSO-gCN nanocomposite was characterized by employing several spectroscopic and microscopic techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red, field emission scanning electron microscopy, and high resolution transmission electron microscopy, to unravel the structural and electronic features of the prepared nanocomposite. The BSO-gCN was drop-casted on a pre-treated glassy carbon electrode (GCE), and their sensor electrode was utilized for electrochemical sensing of 4-nitrophenol (4-NP). The BSO-gCN modified GCE exhibited better electrochemical sensing behavior than the bare GCE and other investigated electrodes. The electroanalytical parameters such as charge transfer coefficient (α = 0.5), the rate constant for electron transfer (k = 1.16 s) and number of electron transferred were calculated. Linear sweep voltammetry (LSV) exhibited increase in peak current linearly with 4-NP concentration in the range between 1.6 and 50 μM. The lowest detection limit (LoD) was calculated to be 1 μM and sensitivity of 0.81 μA μM cm A 100-fold excess of various ions, such as Ca, Na, K, Cl, I, CO, NO, NH and SO did not able to interfere with the determination of 4-NP and high sensitivity for detecting 4-NP in real samples was achieved. This newly developed BSO-gCN could be a potential candidate for electrochemical sensor applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.104855DOI Listing

Publication Analysis

Top Keywords

electrochemical sensing
12
carbon nitride
8
nitride nanocomposite
8
sensing 4-nitrophenol
8
nanocomposite bso-gcn
8
bso-gcn nanocomposite
8
electron microscopy
8
bso-gcn
6
nanocomposite
5
electrochemical
5

Similar Publications

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Enhanced Electrochemical Detection of Valganciclovir Using a Hierarchically Structured Lisianthus Flower-Inspired Bimetallic Ni-Ce Organic Framework.

Langmuir

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

A High-Efficiency Electrochemical Biosensor for the Detection of Mucosal-Associated Invariant T Cells.

Anal Chem

December 2024

Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.

Mucosal-associated invariant T (MAIT) cells exhibit significant potential in the assessment of tumor development and immunotherapy. However, there is currently no convenient and efficient method to analyze the quantitative changes of MAIT cells during cancer development and treatment, which has not been extensively studied. Here, we report an electrochemical biosensor designed to efficiently monitor MAIT cells in peripheral blood by simultaneously recognizing Vα7.

View Article and Find Full Text PDF

In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!