In this study, six different types of biochar (based on two feedstocks and three pyrolytic temperatures) were prepared as individual additives for both syntrophic phenol degradation and methanogenesis promotion. The results showed that for phenol degradation, the addition of biochar (15 g/L) shortened the methanogenic lag time from 15.0 days to 1.1-3.2 days and accelerated the maximum CH production rate from 4.0 mL/d to 10.4-13.9 mL/d. Microbial community analysis revealed that the electro-active Geobacter was enriched (from 3.8-7.7% to 11.1-23.1%), depending on the type of biochar that was added. This indicates a potential shift of syntrophic phenol metabolism from a thermodynamically unfavorable pathway with H as the interspecies electron transfer mediator to direct interspecies electron transfer (DIET). Integrated analysis of methanogenesis dynamics and the electrochemical properties of biochar showed that compared with electrical conductivity, the electron exchange capacity of biochar was more likely to dominate the DIET process, which was due to the presence of redox-active organic functional groups in biochar. The removal of biochar from the anaerobic system generally prolonged the lag time, revealing the importance of adsorption capacity of biochar to mitigate bio-toxicity of phenol to microbial activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121726 | DOI Listing |
Methane mitigation is regarded as a critical strategy to combat the scale of global warming. Currently, about 40% of methane emissions originate from microbial sources, which is causing strategies to suppress methanogens, either through direct toxic effects or by diverting their substrates and energy, to gain traction. Problematically, current microbial methane mitigation knowledge derives from rumen studies and lacks detailed microbiome-centered insights, limiting translation across ecosystems.
View Article and Find Full Text PDFEnviron Res
December 2024
Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China. Electronic address:
J Hazard Mater
July 2024
Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. Electronic address:
The widely existed plastic additives plasticizers in organic wastes possibly pose negative influences on anaerobic digestion (AD) performance, the direct evidence about the effects of plasticizers on AD performance is still lacking. This study evaluated the influencing mechanism of two typical plasticizers bisphenol A (BPA) and dioctyl phthalate on the whole AD process. Results indicated that plasticizers addition inhibited methane production, and the inhibiting effects were reinforced with the increase of concentration.
View Article and Find Full Text PDFWater Res
March 2024
Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:
Biofiltration is an environmentally 'green' technology that is compatible with the recently proposed sustainable development goals, and which has an increasingly important future in the field of water treatment. Here, we explored the impacts of bioelectrochemical integration on a bench-scale slow rate biofiltration system regarding its performance in reclaimed water treatment. Results showed that the short-term (<3 months) integration improved the removal of natural organic matter (NOM) (approximately 8.
View Article and Find Full Text PDFBioresour Technol
February 2024
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China. Electronic address:
In this study, two kinds of magnetic biochar (BC) were synthesized by loading Fe (FeBC) and Fe-Mn oxides (FMBC) and their effects on anaerobic phenolics degradation were investigated. Compared with BC/FMBC, FeBC addition achieved the superior phenolics biodegradation even for 3,5-xylenol. Compared with control, FeBC addition enhanced CH production by 100.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!