Formation of SUMO3-conjugated chains of MAVS induced by poly(dA:dT), a ligand of RIG-I, enhances the aggregation of MAVS that drives the secretion of interferon-β in human keratinocytes.

Biochem Biophys Res Commun

Institute of Hansen's Disease, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. Electronic address:

Published: February 2020

The retinoic-acid inducible gene (RIG)-I is a cytoplasmic pattern recognition receptor that senses single-stranded (ss) or double-stranded (ds) RNA. RIG-I also senses AT-rich dsDNA, poly(dA:dT), through the action of an RNA polymerase III-transcribed RNA intermediate. Upon the binding of an RNA ligand, RIG-I binds to the mitochondrial antiviral-signaling protein (MAVS) and induces the formation of filamentous aggregates of MAVS, leading to the formation of a signaling complex that drives Type I interferon (IFN) responses. In the current study, we investigated the issue of whether the SUMOylation of MAVS induced by poly(dA:dT) affects the aggregation of MAVS in the RIG-I/MAVS pathway in human keratinocytes. Our results show that the poly(dA:dT)-induced secretion of IFN-β was dependent on RIG-I and MAVS. The inhibition of SUMOylation by Ginkgolic acid or Ubc9 siRNA was found to inhibit the poly(dA:dT)-induced secretion of IFN-β, suggesting that the SUMOylation is required for the poly(dA:dT)-activated RIG-I/MAVS pathway, which drives the secretion of IFN-β. In addition, treatment with poly(dA:dT) enhanced the formation of polymeric chains of small-ubiquitin like modifiers (SUMO)3, but not SUMO1 and SUMO2, on MAVS. Our results also show that the conjugation of SUMO3 to MAVS induced by poly (dA:dT) enhanced the aggregation of MAVS. These collective results show that the formation of SUMO3-conjugated chains of MAVS induced by poly (dA:dT), a ligand of RIG-I, enhances the aggregation of MAVS which, in turn, drives the secretion of IFN-β in human keratinocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.11.189DOI Listing

Publication Analysis

Top Keywords

mavs induced
16
aggregation mavs
16
secretion ifn-β
16
mavs
12
ligand rig-i
12
drives secretion
12
human keratinocytes
12
formation sumo3-conjugated
8
sumo3-conjugated chains
8
chains mavs
8

Similar Publications

The innate immune response serves as the primary defense against viral infections, with the recognition of viral nucleic acids by pattern recognition receptors (PRRs) initiating antiviral responses. Mitochondrial antiviral-signaling protein (MAVS) acts as a pivotal adaptor protein in the RIG-I pathway. Alternative splicing further diversifies MAVS isoforms.

View Article and Find Full Text PDF

Cytotoxic DNAs, methylation, histones and histones binding proteins are speculated to induce DNA sensors. Under stressed condition, the antigenic patterns, PAMPs and DAMPs, trigger the hyperactive innate response through DNA, DNA-RNA hybrids, oligonucleotides, histones and mtDNA to initiate cGAMP-STING-IFN I cascade. HSV -1&2, HIV, Varicella- Zoster virus, Polyomavirus, Cytomegalovirus, and KSHV negatively regulate the STING-MAVS-TBK-1/1KKE pathway.

View Article and Find Full Text PDF

SMARCA4 regulates the NK-mediated killing of senescent cells.

Sci Adv

January 2025

MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK.

Induction of senescence by chemotherapeutic agents arrests cancer cells and activates immune surveillance responses to contribute to therapy outcomes. In this investigation, we searched for ways to enhance the NK-mediated elimination of senescent cells. We used a staggered screen approach, first identifying siRNAs potentiating the secretion of immunomodulatory cytokines to later test for their ability to enhance NK-mediated killing of senescent cells.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Chicken hnRNPK suppresses interferon production, thereby enhancing IBDV replication.

Res Vet Sci

March 2025

Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, PR China. Electronic address:

Heterogeneous ribonucleoprotein K (hnRNPK) is a well-known RNA-binding protein initially identified for its role in inhibiting the growth of various human tumors. Members of the hnRNP family have also been implicated in both interferon production and RNA virus replication. However, the role of chicken hnRNPK (chhnRNPK) in the replication of Infectious Bursal Disease Virus (IBDV) remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!