HMCES (5hmC binding, embryonic stem cell-specific-protein), originally identified as a protein capable of binding 5-hydroxymethylcytosine (5hmC), an epigenetic modification generated by TET proteins, was previously reported to covalently crosslink to DNA at abasic sites via a conserved cysteine. We show here that Hmces-deficient mice display normal hematopoiesis without global alterations in 5hmC. HMCES specifically enables DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway during class switch recombination (CSR) in B cells, and HMCES deficiency leads to a significant defect in CSR. HMCES mediates Alt-EJ through its SOS-response-associated-peptidase domain (SRAPd), a function that requires DNA binding but is independent of its autopeptidase and DNA-crosslinking activities. We show that HMCES is recruited to switch regions of the immunoglobulin locus and provide a potential structural basis for the interaction of HMCES with long DNA overhangs generated by Alt-EJ during CSR. Our studies provide further evidence for a specialized role for HMCES in DNA repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980713PMC
http://dx.doi.org/10.1016/j.molcel.2019.10.031DOI Listing

Publication Analysis

Top Keywords

hmces
8
class switch
8
switch recombination
8
cells hmces
8
dna
6
hmces functions
4
functions alternative
4
alternative end-joining
4
end-joining pathway
4
pathway dna
4

Similar Publications

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Celastrol induces DNA damage and cell death in BCR-ABL T315I-mutant CML by targeting YY1 and HMCES.

Phytomedicine

November 2024

Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore. Electronic address:

Background: Chronic myeloid leukemia (CML) is driven primarily by the constitutively active BCR-ABL fusion oncoprotein. Although the development of tyrosine kinase inhibitors has markedly improved the prognosis of CML patients, it remains a significant challenge to overcome drug-resistant mutations, such as the T315I mutation of BCR-ABL, and achieve treatment-free remission in the clinic.

Purpose: The identification of new intervention targets beyond BCR-ABL could provide new perspectives for future research and therapeutic intervention.

View Article and Find Full Text PDF

C-to-G editing generates double-strand breaks causing deletion, transversion and translocation.

Nat Cell Biol

February 2024

Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.

Base editors (BEs) introduce base substitutions without double-strand DNA cleavage. Besides precise substitutions, BEs generate low-frequency 'stochastic' byproducts through unclear mechanisms. Here, we performed in-depth outcome profiling and genetic dissection, revealing that C-to-G BEs (CGBEs) generate substantial amounts of intermediate double-strand breaks (DSBs), which are at the centre of several byproducts.

View Article and Find Full Text PDF

Recent studies have defined a novel pathway for the repair of interstrand cross-links derived from the reaction of an adenine residue with an apurinic/apyrimidinic (AP) site on the opposing strand of DNA (dA-AP ICL). Stalling of a replication fork at the dA-AP ICL triggers TRAIP-dependent ubiquitylation of the CMG helicase that recruits the base excision repair glycosylase NEIL3 to the lesion. NEIL3 unhooks the dA-AP ICL to regenerate the native adenine residue on one strand and an AP site on the other strand.

View Article and Find Full Text PDF

The reaction of 1,2-aminothiol groups with aldehyde residues in aqueous solution generates thiazolidine products, and this process has been developed as a catalyst-free click reaction for bioconjugation. The work reported here characterized reactions of the biologically relevant 1,2-aminothiols including cysteamine, cysteine methyl ester, and peptides containing -terminal cysteine residues with the aldehyde residue of apurinic/apyrimidinic (AP) sites in DNA oligomers. These 1,2-aminothiol-containing compounds rapidly generated adducts with AP sites in single-stranded and double-stranded DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!