Water and energy consumptions in the residential sector are highly correlated. A better understanding of the correlation would help save both water and energy, for example, through technological innovations, management and policies. Recently, there is an increasing need for a higher spatiotemporal resolution in the analysis and modelling of water-energy demand, as the results would be more useful for policy analysis and infrastructure planning in both water and energy systems. In response, this paper developed an agent-based spatiotemporal integrated approach to simulate the water-energy consumption of each household or person agent in second throughout a whole day, considering the influences of out-of-home activities (e.g., work and shopping) on in-home activities (e.g., bathing, cooking and cleaning). The integrated approach was tested in the capital of China, Beijing. The temporal results suggested that the 24-hour distributions of water and related energy consumptions were quite similar, and the water-energy consumptions were highly correlated (with a Pearson correlation coefficient of 0.89); The spatial results suggested that people living in the central districts and the central areas of the outer districts tended to consume more water and related energy, and also the water-energy correlation varies across space. Such spatially and temporally explicit results are expected to be useful for policy making (e.g., time-of-use tariffs) and infrastructure planning and optimization in both water and energy sectors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.135086DOI Listing

Publication Analysis

Top Keywords

water energy
28
integrated approach
12
agent-based spatiotemporal
8
spatiotemporal integrated
8
energy consumptions
8
highly correlated
8
infrastructure planning
8
water
7
energy
7
approach simulating
4

Similar Publications

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

Cadmium translocation combined with metabolomics analysis revealed potential mechanisms of MT@MSN-CS and GSH@MSN-CS in reducing cadmium accumulation in rice (Oryza sativa L.) grains.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.

Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice.

View Article and Find Full Text PDF

Mitigating anthropogenic climate change with aqueous green energy.

Sci Rep

January 2025

School of Earth and Ocean Sciences, University of Victoria, PO Box 1700, Victoria, BC, V8W 2Y2, Canada.

Reaching net zero emissions and limiting global warming to 2 °C requires the widespread introduction of technology-based solutions to draw down existing atmospheric levels and future emissions of CO. One such approach is direct air CO capture and storage (DACCS), a readily available, yet energy-intensive process. The combination of DACCS and ocean thermal energy conversion (OTEC) allows for independently powered carbon capture plants to inject concentrated carbon into deep marine sediments where storage is generally safe and permanent.

View Article and Find Full Text PDF
Article Synopsis
  • A life cycle assessment evaluated the environmental impacts of polyethylene (PE) packaging compared to alternatives like paper, glass, aluminum, and steel in the U.S.
  • The study focused on five packaging applications and assessed various environmental impacts such as global warming potential (GWP), energy use, resources, and water scarcity.
  • Findings show that substituting PE for other materials can decrease life cycle GWP emissions by about 70%, offering significant benefits for packaging sustainability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!