Background: While Salmonella serotyping is of paramount importance for the disease intervention of salmonellosis, a fast and easy-to-operate molecular serotyping solution remains elusive. We have developed a multiplex ligation reaction based on probe melting curve analysis (MLMA) for the identification of 30 common Salmonella serovars.

Methods: Serovar-specific primers and probes were designed based on a comparison of gene targets (wzx and wzy encoding for somatic antigen biosynthesis; fliC and fljB for flagellar antigens) from 5868 Salmonella genomes. The ssaR gene, a type III secretion system component, was included for the confirmation of Salmonella.

Results: All gene targets were detected and gave expected Tm values during assay evaluation. Cross reactions were not demonstrated between the 30 serovars (n = 211), or with an additional 120 serovars (n = 120) and other Enterobacteriaceae (n = 3). The limit of identification for all targets ranged from using 1.2 ng/μL to 1.56 ng/μL of DNA. The intra- and inter-assay standard deviations and the coefficients of variation were no more than 0.5 °C and less than 1% respectively, indicating high reproducibility. From consecutive outpatient stool samples (n = 3590) collected over a 10-month period at 11 sentinel hospitals in Shenzhen, China, we conducted a multicenter study using the traditional Salmonella identification workflow and the MLMA assay workflow in parallel. From Salmonella isolates (n = 496, 13.8%) derived by both workflows, total agreement (kappa = 1.0) between the MLMA assay and conventional serotyping was demonstrated.

Conclusions: With an assay time of 2.5 h, this simple assay has shown promising potential to provide rapid and high-throughput identification of Salmonella serovars for clinical and public health laboratories to facilitate timely surveillance of salmonellosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894471PMC
http://dx.doi.org/10.1186/s12941-019-0338-5DOI Listing

Publication Analysis

Top Keywords

multiplex ligation
8
ligation reaction
8
reaction based
8
based probe
8
probe melting
8
melting curve
8
curve analysis
8
identification common
8
common salmonella
8
salmonella serovars
8

Similar Publications

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder caused by mutations in , with disease severity influenced by the number of copies. Although SMA is one of the most common autosomal recessive disorders, molecular diagnosis still presents challenges. We present a case series illustrating the variable clinical presentations and diagnostic complexities of spinal muscular atrophy (SMA).

View Article and Find Full Text PDF

Over 70 intragenic copy-number variations (CNVs) of PHEX have been identified in patients with X-linked hypophosphatemia (XLH). However, the underlying mechanism of these CNVs has been poorly investigated. Furthermore, although PHEX undergoes X chromosome inactivation (XCI), the association between XLH in women with heterozygous PHEX variants and skewed XCI remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Chromosomal analysis using CMA, MS-MLPA, and trio-WES was conducted on a female fetus with omphalocele, identifying a new 300-kb deletion in the Xq13.1 region affecting the MED12 gene.
  • An ultrasound at 18 weeks showed features indicative of Hardikar syndrome, such as cleft lip and palate, diaphragmatic hernia, and heart displacement.
  • The findings suggest that the deletion of the MED12 gene may play a critical role in the development of Hardikar syndrome, highlighting the potential impact of haploinsufficiency of this gene.
View Article and Find Full Text PDF

Background: Hereditary hypophosphatemia (HH), is a rare condition related to decreased renal tubular phosphate reabsorption. Although X-linked hypophosphatemia or PHEX gene variant is the most frequent cause of HH, recent advances in next-generation sequencing (NGS) techniques enable the identification of genetic etiologies as a whole.

Objective: To identify genetic causes of HH using various genetic testing methods and to compare clinical features between FGF23-dependent and FGF23-independent HH groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!