While the incidence of endometrial cancer continues to rise, the therapeutic options remain limited for advanced or recurrent cases, and most cases are resistant to therapy. The anti-tumor effect of many chemotherapeutic drugs and radiotherapy depends on the induction of DNA damage in cancer cells; thus, activation of DNA damage response (DDR) pathways is considered an important factor affecting resistance to therapy. When some DDR pathways are inactivated, inhibition of other DDR pathways can induce cancer-specific synthetic lethality. Therefore, DDR pathways are considered as promising candidates for molecular-targeted therapy for cancer. The crosstalking ataxia telangiectasia mutated and Rad3 related and checkpoint kinase 1 (ATR-Chk1) and ataxia telangiectasia mutated and Rad3 related and checkpoint kinase 2 (ATM-Chk2) pathways are the main pathways of DNA damage response. In this study, we investigated the anti-tumor effect of inhibitors of these pathways in vitro by assessing the effect of the combination of ATM or ATR inhibitors and conventional DNA-damaging therapy (doxorubicin (DXR), cisplatin (CDDP), and irradiation) on endometrial cancer cells. Both the inhibitors enhanced the sensitivity of cells to DXR, CDDP, and irradiation. Moreover, the combination of ATR and Chk1 inhibitors induced DNA damage in endometrial cancer cells and inhibited cell proliferation synergistically. Therefore, these molecular therapies targeting DNA damage response pathways are promising new treatment strategies for endometrial cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966633PMC
http://dx.doi.org/10.3390/cancers11121913DOI Listing

Publication Analysis

Top Keywords

dna damage
24
endometrial cancer
20
damage response
16
cancer cells
16
ddr pathways
16
atm atr
8
pathways
8
pathways considered
8
ataxia telangiectasia
8
telangiectasia mutated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!