Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sunlight radiation is a main environmental factor which affects anthocyanin synthesis. To clarify the regulatory mechanism of sunlight on the synthesis of anthocyanin in apple peel, bagged apples were exposed to diverse intensities of sunlight through different shading treatments. Under an increased solar ultraviolet-B (UV-B) light intensity, the concentration of anthocyanin in apple peels was consistent with the Michaelis-Menten equation. Under lower sunlight intensities, diphenyleneiodonium chloride (DPI, an inhibitor of plasma membrane NAD(P)H oxidase) treatment increased both the concentration of cyanidin-3-glycoside and the activity of dihydroflavonol 4-reductase (DFR). However, under higher sunlight intensities, DPI treatment decreased the concentrations of cyanidin-3-glycoside and quercetin-3-glycoside, as well as the activities of DFR and UDP-glycose: flavonoid 3-O-glycosyltransferase (UFGT). These results indicate that, under low sunlight intensity, anthocyanin synthesis in apple peel was limited by the supply of the substrate cyanidin, which was regulated by the DFR activity. Nevertheless, after exposure to high sunlight intensity, the anthocyanin produced in the apple peel was dependent on UFGT activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928825 | PMC |
http://dx.doi.org/10.3390/ijms20236060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!