Background: Objective radiographic assessment is crucial for accurately evaluating therapeutic efficacy and patient outcomes in oncology clinical trials. Imaging assessment workflow can be complex; can vary with institution; may burden medical oncologists, who are often inadequately trained in radiology and response criteria; and can lead to high interobserver variability and investigator bias. This article reviews the development of a tumor response assessment core (TRAC) at a comprehensive cancer center with the goal of providing standardized, objective, unbiased tumor imaging assessments, and highlights the web-based platform and overall workflow. In addition, quantitative response assessments by the medical oncologists, radiologist, and TRAC are compared in a retrospective cohort of patients to determine concordance.
Patients And Methods: The TRAC workflow includes an image analyst who pre-reviews scans before review with a board-certified radiologist and then manually uploads annotated data on the proprietary TRAC web portal. Patients previously enrolled in 10 lung cancer clinical trials between January 2005 and December 2015 were identified, and the prospectively collected quantitative response assessments by the medical oncologists were compared with retrospective analysis of the same dataset by a radiologist and TRAC.
Results: This study enlisted 49 consecutive patients (53% female) with a median age of 60 years (range, 29-78 years); 2 patients did not meet study criteria and were excluded. A linearly weighted kappa test for concordance for TRAC versus radiologist was substantial at 0.65 (95% CI, 0.46-0.85; standard error [SE], 0.10). The kappa value was moderate at 0.42 (95% CI, 0.20-0.64; SE, 0.11) for TRAC versus oncologists and only fair at 0.34 (95% CI, 0.12-0.55; SE, 0.11) for oncologists versus radiologist.
Conclusions: Medical oncologists burdened with the task of tumor measurements in patients on clinical trials may introduce significant variability and investigator bias, with the potential to affect therapeutic response and clinical trial outcomes. Institutional imaging cores may help bridge the gap by providing unbiased and reproducible measurements and enable a leaner workflow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6004/jnccn.2019.7331 | DOI Listing |
Alzheimers Dement
December 2024
GSK R&D, Stevenage, Hertfordshire, United Kingdom.
Background: Genetic variants in GRN, the gene encoding progranulin, are causal for or are associated with the risk of multiple neurodegenerative diseases. Modulating progranulin has been considered as a therapeutic strategy for neurodegenerative diseases including Frontotemporal Dementia (FTD) and Alzheimer's Disease (AD). Here, we integrated genetics with proteomic data to determine the causal human evidence for the therapeutic benefit of modulating progranulin in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).
Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.
Alzheimers Dement
December 2024
Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, North Holland, Netherlands.
The lack of an in-vivo pathology marker for synuclein pathology has been a long standing challenge for dementia for Lewy bodies (DLB) research. This issue is critically important for phase II trials, which are often small, requiring the precise measurement of the biological effects, whether disease modifying or symptomatic. Recent advances have enabled the determination of alpha-synuclein pathology status with CSF measurements, using aggregation assays [RT-QUIC].
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) composed of tau aggregates. Research in animal models has generated hypotheses on the underlying mechanisms of the interaction between Aβ and tau pathology. In support of this interaction, results from clinical trials have shown that treatment with anti-Aβ monoclonal antibodies (mAbs) affects tau pathology.
View Article and Find Full Text PDFBackground: Clinical outcome assessments (COAs) are an important part of clinical trials to measure what is meaningful to patients and caregivers. This study aimed to examine trends in Alzheimer's Disease (AD) COAs used in clinical trials, given the FDA's recent emphasis on patient-focused drug development and early AD.
Method: ClinicalTrials.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!