Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
How anthropogenic stressors affect biodiversity is a central question in a changing world. Subterranean ecosystems and their biodiversity are particularly vulnerable to change, yet, these species are frequently neglected in analyses of global biodiversity and assessments of ecological status and risk. Are these hidden species affected by anthropogenic stressors? Do they survive outside of the current thermal limits of their ecosystems? These and other important questions can be addressed with ecotoxicological testing, relating contaminants and temperature resistance of species with measured environmental concentrations and climatic data. Ecotoxicological knowledge specific to subterranean ecosystems is crucial for establishing thresholds for their protection, but such data are both scarce and scattered. Here, we review the existing ecotoxicological studies of these impacts to subterranean-adapted species. An effort that includes 167 measured endpoints and presents a database containing experimentally derived species' tolerance data for 28 contaminants and temperature, for 46 terrestrial and groundwater species, including fungi and animals. The lack of standard data among the studies is currently the major impediment to evaluate how stressors affect subterranean-adapted species and how differently they respond from their relatives at surface. Improving understanding of ecotoxicological effects on subterranean-adapted species will require extensive analysis of physiological responses to a wide range of untested stressors, standardization of testing protocols and evaluation of exposures under realistic scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.125422 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!