The genus Plasmodium is a unicellular eukaryotic parasite that is the causative agent of malaria, which is transmitted by Anopheline mosquito. There are a total of three developmental stages in the production of haploid parasites in the Plasmodium life cycle: the oocyst stage in mosquitoes and the liver and blood stages in mammalian hosts. The Plasmodium oocyst stage plays an important role in the production of the first generation of haploid parasites. Nuclear division is the most important event that occurs during the proliferation of all eukaryotes. However, obtaining the details of nuclear division at the oocyst stage is challenging owing to difficulties in preparation. In this study, we used focused-ion-beam-milling combined with scanning-electron-microscopy to report the 3D architecture during nuclear segregations in oocyst stage. This advanced technology allowed us to analyse the 3D details of organelle segregation inside the oocyst during sporogony formation. It was revealed that multiple nuclei were involved with several centrosomes in one germ nucleus during sporozoite budding (endopolygeny). Our high-resolution 3D analysis uncovered the endopolygeny-like nuclear architecture of Plasmodium in the definitive host. This nuclear segregation was different from that in the blood stage, and its similarity to other apicomplexan parasite nuclear divisions such as Sarcocystis is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parint.2019.102034DOI Listing

Publication Analysis

Top Keywords

oocyst stage
16
endopolygeny-like nuclear
8
nuclear architecture
8
plasmodium oocyst
8
haploid parasites
8
nuclear division
8
nuclear
7
oocyst
6
plasmodium
5
stage
5

Similar Publications

Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on the prevalence of intestinal protozoan infections among children in Duhok Province, Iraq, from October 2022 to May 2023, involving 740 pediatric patients.
  • A total of 205 children (27.7%) tested positive for infections, with the highest rates found in the 5-9 age group, and significant variations in prevalence noted among different age categories.
  • The findings indicate that amoebiasis and cryptosporidiosis are more common than previously reported in Iraq, while giardiasis occurred at lower rates, highlighting the need for improved public health measures.
View Article and Find Full Text PDF

Background: The Protozoan pathogen Eimeria is a significant issue in poultry production. Scientists are concerned with finding alternative strategies due to the spread of resistance against the commonly employed coccidiostats. This study examined how well myrrh extract (MyE) protected domesticated pigeons from an experimental Eimeria labbeana-like infection.

View Article and Find Full Text PDF

Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito.

View Article and Find Full Text PDF

Coccidiosis is a gastrointestinal parasitic disease caused by different species of Eimeria and Isospora, poses a significant threat to pig farming, leading to substantial economic losses attributed to reduced growth rates, poor feed conversion, increased mortality rates, and the expense of treatment. Traditional methods for identifying Coccidia species in pigs rely on fecal examination and microscopic analysis, necessitating expert personnel for accurate species identification. To address this need, a deep learning-based mobile application capable of automatically identifying different species of Eimeria and Isospora was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!