Background: Right ventricular myocardial pacing leads to nonphysiological activation of heart ventricles. Contrary to this, His bundle pacing preserves their fast activation. Ultra-high-frequency electrocardiography (UHF-ECG) is a novel tool for ventricular depolarization assessment.

Objective: The purpose of this study was to describe UHF-ECG depolarization patterns during myocardial and His bundle pacing.

Methods: Forty-six patients undergoing His bundle pacing to treat bradycardia and spontaneous QRS complexes without bundle branch block were included. UHF-ECG recordings were performed during spontaneous rhythm, pure myocardial para-Hisian capture, and His bundle capture. QRS duration, QRS area, depolarization time in specific leads, and the UHF-ECG-derived ventricular dyssynchrony index were calculated.

Results: One hundred thirty-three UHF-ECG recordings were performed in 46 patients (44 spontaneous rhythm, 28 selective His bundle, 43 nonselective His bundle, and 18 myocardial capture). The mean QRS duration was 117 ms for spontaneous rhythm, 118 ms for selective, 135 ms for nonselective, and 166 ms for myocardial capture (P < .001 for nonselective and myocardial capture compared to each of the other types of ventricular activation). The calculated dyssynchrony index was shortest during spontaneous rhythm (12 ms; P = .02 compared to selective and P = .09 compared to nonselective), and it did not differ between selective and nonselective His bundle capture (16 vs 15 ms; P > .99) and was longest during myocardial capture of the para-Hisian area (37 ms; P < .001 compared to each of the other types of ventricular activation).

Conclusion: In patients without bundle branch block, both types of His bundle, but not myocardial, capture preserve ventricular electrical synchrony as measured using UHF-ECG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2019.11.016DOI Listing

Publication Analysis

Top Keywords

myocardial capture
20
spontaneous rhythm
16
nonselective bundle
12
bundle myocardial
12
bundle
11
myocardial
9
selective nonselective
8
myocardial pacing
8
preserve ventricular
8
ventricular electrical
8

Similar Publications

Advancing 3D Engineered In Vitro Models for Heart Failure Research: Key Features and Considerations.

Bioengineering (Basel)

December 2024

Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands.

Heart failure is characterized by intricate myocardial remodeling that impairs the heart's pumping and/or relaxation capacity, ultimately reducing cardiac output. It represents a major public health burden, given its high prevalence and associated morbidity and mortality rates, which continue to challenge healthcare systems worldwide. Despite advancements in medical science, there are no treatments that address the disease at its core.

View Article and Find Full Text PDF

DeSPPNet: A Multiscale Deep Learning Model for Cardiac Segmentation.

Diagnostics (Basel)

December 2024

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.

Background: Cardiac magnetic resonance imaging (MRI) plays a crucial role in monitoring disease progression and evaluating the effectiveness of treatment interventions. Cardiac MRI allows medical practitioners to assess cardiac function accurately by providing comprehensive and quantitative information about the structure and function, hence making it an indispensable tool for monitoring the disease and treatment response. Deep learning-based segmentation enables the precise delineation of cardiac structures including the myocardium, right ventricle, and left ventricle.

View Article and Find Full Text PDF

Assessment of Coronary Microcirculation with High Frame-Rate Contrast-Enhanced Echocardiography.

Ultrasound Med Biol

January 2025

Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands. Electronic address:

Objective: Assessing myocardial perfusion in acute myocardial infarction is important for guiding clinicians in choosing appropriate treatment strategies. Echocardiography can be used due to its direct feedback and bedside nature, but it currently faces image quality issues and an inability to differentiate coronary macro- from micro-circulation. We previously developed an imaging scheme using high frame-rate contrast-enhanced ultrasound (HFR CEUS) with higher order singular value decomposition (HOSVD) that provides dynamic perfusion and vascular flow visualization.

View Article and Find Full Text PDF

Transthyretin Cardiac amyloidosis (ATTR-CA) is an increasingly recognised cause of heart failure in our elderly patients with preserved ejection fraction. Patients with ATTR-CA who require permanent pacemaker implantation often have preserved ejection fraction and do not meet the clinical indication for cardiac resynchronization therapy (CRT). In these patients, left bundle branch area pacing (LBBAP) can be a reasonable option to maximise physiological activation of the left ventricle.

View Article and Find Full Text PDF

Background: Practice guidelines recommend patient management based on scientific evidence. Quality indicators gauge adherence to such recommendations and assess health care quality. They are usually defined as adverse event rates, which may not fully capture guideline adherence over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!