ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway.

Exp Mol Pathol

Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200080, PR China. Electronic address:

Published: April 2020

AI Article Synopsis

  • This study explored how angiotensin converting enzyme 2 (ACE2) protects against acute lung injury (ALI) caused by lipopolysaccharide (LPS) in mouse models and cell cultures.
  • Mice with LPS-induced ALI showed reduced levels of ACE2, increased lung damage, and heightened inflammation, but ACE2 treatment improved lung function and reduced inflammation.
  • The research indicates that ACE2 plays a crucial role in balancing the renin-angiotensin system and mitigating inflammation during lung injury, and that combining ACE2 treatment with specific inhibitors enhances its protective effects.

Article Abstract

This study aimed to investigate the protective effect of angiotensin converting enzyme 2 (ACE2) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). After generating ALI mouse models by injecting LPS, the levels of ACE2, inflammatory factors, and downstream proteins of the LPS-TLR4 pathway were analyzed. LPS-challenged BEAS-2B cells were established in vitro. Next, a eukaryotic expression vector, pm-ACE2, was constructed and validated. Challenged cells were transfected with pm-ACE2 containing enhanced green fluorescent protein, or they were treated with D-Ala-Ang-(1-7), angiotensin converting enzyme inhibitor (ACEI), angiotensin receptor blocker (ARB) and the LPS-TLR4 pathway inhibitor dimethyl fumarate (DMF) for analysis of how the above factors contribute to ACE2 regulation. Expression of renin, Ang II, ACE and angiotensin II type 1 receptor (AT1R) was subsequently assessed. In the ALI model, mice exhibited decreased expression of ACE2, lung pathological injury, inflammatory injury, and abnormal activation of the LPS-TLR4 pathway. LPS-challenged BEAS-2B cells demonstrated upregulated expression of renin, Ang II, ACE and AT1R. After injection of ACE2, lung function and lung pathological injury were significantly improved, and that effect was accompanied by attenuated inflammation, and inactivation of the LPS-TLR4 pathway. Cell studies showed similar results. The above observations were further enhanced when there was a combined treatment with DMF and pm-ACE2. D-Ala-Ang-(1-7) treatment attenuated the protective effect of ACE2, while ACEI and ARB treatment alleviated LPS-induced pneumonic injury. In conclusion, ACE2 was expressed at low levels in response to LPS-induced ALI. Overexpression of ACE2 regulates the ACE2/Ang-(1-7)/Mas and ACE/Ang II/AT1 axes to maintain dynamic balance of the renin-angiotensin system, and attenuate inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexmp.2019.104350DOI Listing

Publication Analysis

Top Keywords

lps-tlr4 pathway
20
ace2
9
lps-induced acute
8
acute lung
8
lung injury
8
angiotensin converting
8
converting enzyme
8
lps-challenged beas-2b
8
beas-2b cells
8
expression renin
8

Similar Publications

Goose Deoxycholic Acid Ameliorates Liver Injury in Laying Hens with Fatty Liver Hemorrhage Syndrome by Inhibiting the Inflammatory Response.

Int J Mol Sci

January 2025

Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver.

View Article and Find Full Text PDF

Background: Metabolic syndrome (MS) refers to a cluster of metabolic disorders characterized by systemic chronic inflammation. Er Miao San (EMS) is a classic traditional Chinese medicine compound containing Phellodendron amurense and Atractylodis rhizome at a ratio of 1:1, proven to be effective against inflammatory diseases in clinical practice. Nevertheless, the precise functions of EMS in treating MS and its underlying mechanism have yet to be elucidated.

View Article and Find Full Text PDF

Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.

View Article and Find Full Text PDF

Polysaccharide extracted from Grifola frondosa (GFP) was selected in this study. After preliminary separation, four factions were collected, named GFP-F1, GFP-F2, GFP-F3 and GFP-F4. GPF-F2 was further separated into two fractions, namely GFP-N1 and GFP-N2.

View Article and Find Full Text PDF

An ultrasonic degraded polysaccharide extracted from Pueraria lobata ameliorate ischemic brain injury in mice by regulating the gut microbiota and LPS-TLR4 pathway.

Ultrason Sonochem

January 2025

Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China. Electronic address:

Ischemia brain injury is closely associated with the gut microbiota. Polysaccharides, as a typical prebiotic, have been extensively employed in stroke treatment. In our previous study, Pueraria lobata polysaccharide (PLP-3) with antioxidant activity was prepared via water extraction and alcohol precipitation combined with ultrasonic degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!