This study aimed at illustrating how direct measurements, mobile laser scanning and hydraulic modelling can be combined to quantify environmental drivers, improve vegetation models and increase our understanding of vegetation patterns in a sub-arctic river valley. Our results indicate that the resultant vegetation models successfully predict riparian vegetation patterns (Rho = 0.8 for total species richness, AUC = 0.97 for distribution) and highlight differences between eight functional species groups (Rho 0.46-0.84; AUC 0.79-0.93; functional group-specific effects). In our study setting, replacing the laser scanning-based and hydraulic modelling-based variables with a proxy variable elevation did not significantly weaken the models. However, using directly measured and modelled variables allows relating species patterns to e.g. stream power or the length of the flood-free period. Substituting these biologically relevant variables with proxies mask important processes and may reduce the transferability of the results into other sites. At the local scale, the amount of litter is a highly important driver of total species richness, distribution and abundance patterns (relative influences 49, 72 and 83%, respectively) and across all functional groups (13-57%; excluding lichen species richness) in the sub-arctic river valley. Moreover, soil organic matter and soil water content shape vegetation patterns (on average 16 and 7%, respectively). Fluvial disturbance is a key limiting factor only for lichen, bryophyte and dwarf shrub species in this environment (on average 37, 6 and 10%, respectively). Fluvial disturbance intensity is the most important component of disturbance for most functional groups while the length of the disturbance-free period is more relevant for lichens. We conclude that striving for as accurate quantifications of environmental drivers as possible may reveal important processes and functional group differences and help anticipate future changes in vegetation. Mobile laser scanning, high-resolution digital elevation models and hydraulic modelling offer useful methodology for improving correlative vegetation models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894786PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225936PLOS

Publication Analysis

Top Keywords

mobile laser
12
laser scanning
12
hydraulic modelling
12
vegetation models
12
vegetation patterns
12
species richness
12
vegetation
8
riparian vegetation
8
vegetation mobile
8
scanning hydraulic
8

Similar Publications

The prebiopsy photo: A tool to improve patient safety and outcomes.

JAAPA

February 2025

Christy Kerr practices at Dermatology & Laser of Del Mar in Del Mar, Calif. The author has disclosed no potential conflicts of interest, financial or otherwise.

This article reviews the reasons to take a prebiopsy photograph and the consequences that can ensue when one is not taken. Electronic medical record systems compatible with mobile devices can record clinical photographs that comply with patient privacy regulations, making them the method of choice for dermatologic photo documentation. Correct photographic documentation technique also is critical and is reviewed with examples.

View Article and Find Full Text PDF

Micro-Electro Nanofibrous Dressings Based on PVDF-AgNPs as Wound Healing Materials to Promote Healing in Active Areas.

Int J Nanomedicine

January 2025

Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.

Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Background: In most of the published plication techniques in face lift surgery, the vectors of plication are not entirely superiorly and vertically directed. The same applies with the deep plane, SMAS elevation techniques in the majority of which the vectors of traction are not superiorly vertically directed. The aging symptoms are mostly prominent at the anterior mobile face due to the gravity effect, and this is the area where attention should be focused to correct these symptoms following a face lift surgery.

View Article and Find Full Text PDF

Rheology modifiers (RMs) are polymeric molecules providing rheological control of formulations, which are important in product application, shelf-life, and aesthetic perception. Bio-derived polyethylene glycol (PEG)-based RMs thicken formulations through nonionic-associative thickening where at least two hydrophobic end groups from a RM molecule interact with other hydrophobic groups of other RM molecules or ingredients in the formulation to form an associative network. We report a comprehensive two-dimensional liquid chromatography (2D-LC) separation of partly bio-derived PEG-based RMs in size exclusion chromatography (SEC) × reversed-phase liquid chromatography (RPLC) mode for the separation of RM components based on both molecular weight distribution and end group hydrophobe distribution.

View Article and Find Full Text PDF

Roadside tree segmentation and parameter extraction play an essential role in completing the virtual simulation of road scenes. Point cloud data of roadside trees collected by LiDAR provide important data support for achieving assisted autonomous driving. Due to the interference from trees and other ground objects in street scenes caused by mobile laser scanning, there may be a small number of missing points in the roadside tree point cloud, which makes it familiar for under-segmentation and over-segmentation phenomena to occur in the roadside tree segmentation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!