Inhaled antibiotic treatment of cystic fibrosis-related bacterial biofilm infections is challenging because of the pathological environment of the lungs. Here, we present an "environment-adaptive" nanoparticle composed of a solid poly lactic--glycolic acid (PLGA) core and a mucus-inert, enzymatically cleavable shell of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for the site-specific delivery of antibiotics to bacterial biofilms via aerosol administration. The hybrid nanoparticles with ultrasmall size were self-assembled via a nanoprecipitation process by using a facile microfluidic method. The interactions of the nanoparticles with the biological barriers were comprehensively investigated by using cutting-edge techniques (e.g., quartz crystal microbalance with dissipation monitoring, total internal reflection fluorescence microscopy-based particle tracking, in vitro biofilm model cultured in a flow-chamber system, and quantitative imaging analysis). Our results suggest that the mucus-inert, enzymatically cleavable TPGS shell enables the nanoparticles to penetrate through the mucus, accumulate in the deeper layer of the biofilms, and serve as sustained release depot, thereby improving the killing efficacy of azithromycin (a macrolide antibiotic) against biofilm-forming . In conclusion, the ultrasmall TPGS-PLGA hybrid nanoparticles represent an efficient delivery system to overcome the multiple barriers and release antibiotics in a sustained manner in the vicinity of the biofilm-forming bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b19644 | DOI Listing |
Anal Chem
January 2025
Department of Life Technologies/Biotechnology, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
The anti-Stokes emission of photon upconversion nanoparticles (UCNPs) facilitates their use as labels for ultrasensitive detection in biological samples as infrared excitation does not induce autofluorescence at visible wavelengths. The detection of extremely low-abundance analytes, however, remains challenging as it is impossible to completely avoid nonspecific binding of label conjugates. To overcome this limitation, we developed a novel hybridization complex transfer technique using UCNP labels to detect short nucleic acids directly without target amplification.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.
The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China.
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Physics and Electronic Information, Yunnan Normal University, 650500 Kunming, China. Electronic address:
Rational design of effective cathode host materials is an effective way to solve the problems of serious shuttle and slow conversion of polysulfides in lithium-sulfur batteries (LSBs). However, the redox reaction of sulfur differs from conventional "Rocking chair" type batteries and involves a cumbersome phase transition process, so a single-component catalyst cannot consistently and steadily enhance the reaction rate throughout the redox process. In this work, a hybrid composed of magnetopyrite FeS catalyst-modified with N/S-doped porous carbon spheres (FeS@NSC) is proposed as a novel sulfur host to synergistically promote the adsorption and redox catalysis conversion of polysulfides.
View Article and Find Full Text PDFDalton Trans
January 2025
Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.
(Eu[PTC])(Eu[TREN-1,2-HOPO]) inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!