Human norovirus is the leading cause of acute gastroenteritis worldwide, affecting every year 685 million people. In about one third of cases, this virus affects children under five years of age, causing each year up to 200,000 child deaths, mainly in the developing countries. Norovirus outbreaks are associated with very significant economic losses, with an estimated societal cost of 60 billion dollars per year. Despite the marked socio-economic consequences associated, no therapeutic options or vaccines are currently available to treat or prevent this infection. One promising target to identify new antiviral agents for norovirus is the viral polymerase, which has a pivotal role for the viral replication and lacks closely homologous structures in the host. Starting from the scaffold of a novel class of norovirus polymerase inhibitors recently discovered in our research group with a computer-aided method, different new chemical modifications were designed and carried out, with the aim to identify improved agents effective against norovirus replication in cell-based assays. While different new inhibitors of the viral polymerase were found, a further computer-aided ligand optimisation approach led to the identification of a new antiviral scaffold for norovirus, which inhibits human norovirus replication at low-micromolar concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895199 | PMC |
http://dx.doi.org/10.1038/s41598-019-54903-7 | DOI Listing |
Arch Virol
January 2025
Center for Translational Medicine, Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Zhengzhou, 450000, People's Republic of China.
Trypsin digestion of the GII.6 norovirus (NoV) major capsid protein VP1 promotes its binding to histo-blood group antigens (HBGAs), which are believed to be co-receptors for NoVs. In our previous study, we found that trypsin digestion led to the disassembly of GII.
View Article and Find Full Text PDFBMJ Open
January 2025
Enteric Zoonotic and Vector-Borne Disease Laboratory, Royal Centre for Disease Control, Thimphu, Bhutan.
Objectives: This study aimed to identify the aetiological spectrum, seasonal distribution and antimicrobial resistance patterns of diarrhoeal diseases in Bhutan.
Study Design And Setting: The study used a cross-sectional, retrospective analysis of secondary data gathered through a passive, hospital-based sentinel surveillance for diarrhoeal disease across 12 hospitals, representing Bhutan's demographically diverse regions.
Participants: A total of 3429 participants' data of all age groups who presented with diarrhoea at sentinel hospitals between 1 January 1 2016 and 31 December 2022 were analysed.
Food Environ Virol
January 2025
School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
Open Forum Infect Dis
January 2025
Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.
Background: Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide.
View Article and Find Full Text PDFClin Chem
January 2025
Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.
Background: Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!