Micromechanical Response of Crystalline Phases in Alternate Cementitious Materials using 3-Dimensional X-ray Techniques.

Sci Rep

Cornell High Energy Synchrotron Source, 161 Synchrotron Dr, Ithaca, NY, 14853, USA.

Published: December 2019

Cementitious materials are complex composites that exhibit significant spatial heterogeneity in their chemical composition and micromechanical response. Modern 3-dimensional characterization techniques using X-rays from synchrotron light sources, such as micro-computed tomography (μCT) and far-field high-energy diffraction microscopy (ff-HEDM), are now capable of probing this micromechanical heterogeneity. In this work, the above mentioned techniques are used to understand the varying micromechanical response of crystalline phases (cubic iron oxide and α-quartz) inherently present within an alkali-activated fly ash (AAF) during in-situ confined compression. A subset of the crystals probed using ff-HEDM are registered with the tomographic reconstructions and tracked through the applied loads, highlighting the combination of μCT and ff-HEDM as a means to examine both elastic strain in the crystalline particles (and by extension local stress response) and plastic strain in the matrix. In this study, significant differences in the load carrying behaviors of the crystalline phases were observed wherein the cubic iron oxide crystals laterally expanded during the confined compression test, while the α-quartz particles laterally contracted and at the final load step, shed load likely due to failure in the surrounding matrix. Finally, the two characterization techniques are discussed in terms of both advantages and associated challenges for analysis of multi-phase cementitious materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895041PMC
http://dx.doi.org/10.1038/s41598-019-54724-8DOI Listing

Publication Analysis

Top Keywords

micromechanical response
12
crystalline phases
12
cementitious materials
12
response crystalline
8
characterization techniques
8
cubic iron
8
iron oxide
8
confined compression
8
micromechanical
4
crystalline
4

Similar Publications

Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage.

Acta Biomater

January 2025

Biomedical Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK. Electronic address:

The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion and managing degenerative conditions like osteoarthritis.

View Article and Find Full Text PDF

Negative gas adsorption transitions and pressure amplification phenomena in porous frameworks.

Chem Soc Rev

January 2025

Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.

Nanoporous solids offer a wide range of functionalities for industrial, environmental, and energy applications. However, only a limited number of porous materials are responsive, the nanopore dynamically alters its size and shape in response to external stimuli such as temperature, pressure, light or the presence of specific molecular stimuli adsorbed inside the voids deforming the framework. Adsorption-induced structural deformation of porous solids can result in unique counterintuitive phenomena.

View Article and Find Full Text PDF

Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the ' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.

View Article and Find Full Text PDF

Developmental dynamics mimicking inversely engineered pericellular matrix for articular cartilage regeneration.

Biomaterials

December 2024

School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, PR China. Electronic address:

The mechanical mismatch of scaffold matrix-mesenchymal stem cells (MSCs) has been a longstanding issue in the clinical application of MSC-based therapy for articular cartilage (AC) regeneration. Existing tissue-engineered scaffolds underestimate the importance of the natural chondrocyte pericellular matrix (PCM). Here, we reveal the temporal and spatial characteristics of collagen distribution around the chondrocytes.

View Article and Find Full Text PDF

The introduction of defects in metal-organic frameworks (MOFs) is an effective method to improve the performance of MOFs in many applications, but it also compromises the mechanical properties of MOFs. Thus, a comprehensive understanding of the mechanical properties of defective MOFs becomes important for the defect engineering in MOFs. Herein, using the in situ compression tests, we directly observe very different mechanical responses in HKUST-1 MOFs with various defect concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!