Haploinsufficiency for PTEN is a cause of autism spectrum disorder and brain overgrowth; however, it is not known if PTEN mutations disrupt scaling across brain areas during development. To address this question, we used magnetic resonance imaging to analyze brains of male Pten haploinsufficient (Pten) mice and wild-type littermates during early postnatal development and adulthood. Adult Pten mice display a consistent pattern of abnormal scaling across brain areas, with white matter (WM) areas being particularly affected. This regional and WM enlargement recapitulates structural abnormalities found in individuals with PTEN haploinsufficiency and autism. Early postnatal Pten mice do not display the same pattern, instead exhibiting greater variability across mice and brain regions than controls. This suggests that Pten haploinsufficiency may desynchronize growth across brain regions during early development before stabilizing by maturity. Pten cortical cultures display increased proliferation of glial cell populations, indicating a potential substrate of WM enlargement, and provide a platform for testing candidate therapeutics. Pten haploinsufficiency dysregulates coordinated growth across brain regions during development. This results in abnormally scaled brain areas and associated behavioral deficits, potentially explaining the relationship between PTEN mutations and neurodevelopmental disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895202PMC
http://dx.doi.org/10.1038/s41398-019-0656-6DOI Listing

Publication Analysis

Top Keywords

pten haploinsufficiency
16
brain areas
16
pten
12
scaling brain
12
pten mice
12
brain regions
12
brain
8
areas development
8
pten mutations
8
early postnatal
8

Similar Publications

Haploinsufficiency of phosphodiesterase 10A activates PI3K/AKT signaling independent of PTEN to induce an aggressive glioma phenotype.

Genes Dev

April 2024

Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA;

Article Synopsis
  • Glioblastoma is a highly fatal brain tumor with chromosomal alterations affecting oncogenes and tumor suppressors, and research identified 6q27 as a poor prognostic marker.
  • Using a combination of CRISPR, transcriptomic data, and mouse models, the study explored Pde10a as a potential tumor suppressor in the 6q27 region and found its suppression leads to aggressive tumor behavior and treatment resistance.
  • Pde10a suppression was linked to enhanced PI3K/AKT signaling and a change in tumor cell characteristics, suggesting glioblastoma patients with Pde10a loss may have worse outcomes but might benefit from PI3K inhibitors.
View Article and Find Full Text PDF

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure.

View Article and Find Full Text PDF

The complement system is a major component of the innate immune system that works through the cytolytic effect of the membrane attack complex (MAC). Complement component 7 (C7) is essential for MAC assembly and its precisely regulated expression level is crucial for the cytolytic activity of MAC. We show that C7 is specifically expressed by the stromal cells in both mouse and human prostates.

View Article and Find Full Text PDF

Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes.

View Article and Find Full Text PDF

Sotos syndrome is a rare genetic disorder caused by haploinsufficiency of the (nuclear receptor binding SET domain containing protein 1) gene. No clinical diagnostic consensus criteria are published yet, and molecular analysis reduces the clinical diagnostic uncertainty. We screened 1530 unrelated patients enrolled from 2003 to 2021 at Galliera Hospital and Gaslini Institute in Genoa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!