Nickel and Oxidative Stress: Cell Signaling Mechanisms and Protective Role of Vitamin C.

Endocr Metab Immune Disord Drug Targets

Department of Physiology, Laboratory of Vascular Physiology and Medicine, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur-586103, Karnataka, India.

Published: June 2021

Background: Nickel activates the signaling pathways through the oxygen sensing mechanism and the signaling cascades that control hypoxia-inducible transcriptional gene expressions through oxidative stress. This review emphasizes on the recent updates of nickel toxicities on oxidant and antioxidant balance, molecular interaction of nickel and its signal transduction through low oxygen microenvironment in the in-vivo physiological system.

Discussion: Nickel alters intracellular chemical microenvironment by increasing ionized calcium concentration, lipid peroxidation, cyclooxygenase, constitutive nitric oxide synthase, leukotriene B4, prostaglandin E2, interleukins, tumor necrosis factor-α, caspases, complement activation, heat shock protein 70 kDa and hypoxia-inducible factor-1α. The oxidative stress induced by nickel is responsible for the progression of metastasis. It has been observed that nickel exposure induces the generation of reactive oxygen species which leads to the increased expression of p53, NF-kβ, AP-1, and MAPK. Ascorbic acid (vitamin C) prevents lipid peroxidation, oxidation of low-density lipoproteins and advanced oxidation protein products. The mechanism involves that vitamin C is capable of reducing ferric iron to ferrous iron in the duodenum, thus the availability of divalent ferrous ion increases which competes with nickel (a divalent cation itself) and reduces its intestinal absorption and nickel toxicities.

Conclusion: Reports suggested the capability of ascorbic acid as a regulatory factor to influence gene expression, apoptosis and other cellular functions of the living system exposed to heavy metals, including nickel.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871530319666191205122249DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
nickel
10
lipid peroxidation
8
ascorbic acid
8
nickel oxidative
4
stress cell
4
cell signaling
4
signaling mechanisms
4
mechanisms protective
4
protective role
4

Similar Publications

Background: Coronary artery disease (CAD) has become a dominant economic and health burden worldwide, and the role of autophagy in CAD requires further clarification. In this study, we comprehensively revealed the association between autophagy flux and CAD from multiple hierarchies. We explored autophagy-associated long noncoding RNA (lncRNA) and the mechanisms underlying oxidative stress-induced human coronary artery endothelial cells (HCAECs) injury.

View Article and Find Full Text PDF

Background/aim: In a tongue-submandibular lymph node (SLN) metastasis model, the cystine/glutamate transporter solute carrier family 7, member 11 (Slc7a11), also known as xCT, was found to increase in lymphatic endothelial cells (LECs) within SLNs prior to melanoma cell metastasis. However, the precise mechanism by which xCT influences LECs remains unclear. This study aimed to explore the role of xCT in primary cultured LECs.

View Article and Find Full Text PDF

Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents.

Dev Neurobiol

January 2025

Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.

Owing to the high prevalence of gastrointestinal dysfunction in patients, the gut-brain axis is considered to play a vital role in neurodevelopment diseases. Recent pieces of evidence have pointed to the usage of antibiotics at an early developmental stage to be a causative factor in autism due to its ability to induce critical changes in the gut microbiota. The purpose of the study is to determine the neuroprotective effect of capric acid (CA) on autism in antibiotic-induced gut dysbiosis in rodents.

View Article and Find Full Text PDF

Introduction: Persistent postural-perceptual dizziness (PPPD) is the most prevalent chronic functional dizziness in the clinic. Unsteadiness, dizziness, or non-spinning vertigo are the main symptoms of PPPD, and they are typically aggravated by upright posture, active or passive movement, and visual stimulation. The pathogenesis of PPPD remains incompletely understood, and it cannot be attributed to any specific anatomical defect within the vestibular system.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a diverse neurodegenerative disease, is the leading cause of dementia, accounting for 60-80 % of all cases. The pathophysiology of Alzheimer's disease is unknown, and there is no cure at this time. Recent developments in transcriptome-wide profiling have led to the identification of a number of non-coding RNAs (ncRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!