The heating ability upon application of an alternating magnetic field of a system of monodisperse and non-interacting superparamagnetic nanoparticles is described by Rosensweig's model within the linear response limits. But in real applications, nanoparticle systems are rarely monodisperse or non-interacting, and predicting their heating ability is challenging, since it requires considering single-particle, inter-particle and collective effects. Herein we give experimental evidence of a collective effect that invalidates the linear response limits in self-assembled anisotropic arrangements. This effect allows tuning Néel relaxation times and, in turn, blocking temperatures, by just varying the alternating magnetic field amplitude. The analysis of the source magnetic and magnetothermal data leads to the development of an empirical model describing the modified Néel relaxation times in terms of characteristic parameters, whose physical interpretation is discussed. As a result, the dependency of Néel relaxation time on the magnetic field amplitude is assigned to a strong interaction energy contribution created locally by the ordered anisotropic assemblies. The reduction of this energy upon application of higher magnetic fields is related to the loss of preferred orientation of the magnetic moment of nanoparticles within assemblies. Remarkably, this energy contribution does not depend on particle volume distribution, so it does not contribute to widening of the energy barrier distribution of the assemblies, avoiding this detrimental effect of magnetic interactions, and contributing to an excellent heating ability. This work thus provides an analytical framework to analyze or predict the magnetic behavior and heating ability of superparamagnetic nanoparticles displaying collective effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr05946f | DOI Listing |
J Mater Chem B
January 2025
Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Biomedical Engineering , University of Wisconsin-Milwaukee College of Engineering and Applied Science, 3203 N Downer Ave, Milwaukee, Milwaukee, Wisconsin, 53211-3029, UNITED STATES.
Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, United States.
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Nanoscale Biophotonics Laboratory, University of Galway, University Road, Galway H91 TK33 Ireland. Electronic address:
Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.
View Article and Find Full Text PDFJ Anim Sci
January 2025
University of Minnesota, Department of Food Science and Nutrition, St. Paul, MN 55108 USA.
Feeding pigs lipids containing high levels of lipid oxidation products (LOP) has been shown to reduce growth performance, but data is lacking on quantitative relationships between LOP and pig growth, feed intake and feed efficiency. Four experiments (EXP) were conducted using soybean oil (SO) in EXP 1, 2, and 3, as well as SO, choice white grease (CWG) and palm oil (PO) in EXP 4, to evaluate the impact of feeding diets containing different amounts of LOP on pig performance. Lipid peroxidation was carried out using variable heating temperatures and durations to generate lipids with a broad range of peroxide (PV, mEq) and anisidine value (AnV, unitless).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!