The field of protein-polymer conjugates has suffered from a lack of predictive tools and design guidelines to synthesize highly active and stable conjugates. In order to develop this type of information, structure-function-dynamics relationships must be understood. These relationships depend strongly on protein-polymer interactions and how these influence protein dynamics and conformations. Probing nanoscale interactions is experimentally difficult, but computational tools, such as molecular dynamics simulations, can easily obtain atomic resolution. Atomistic molecular dynamics simulations were used to study α-chymotrypsin (CT) densely conjugated with either zwitterionic, positively charged, or negatively charged polymers. Charged polymers interacted with the protein surface to varying degrees and in different regions of the polymer, depending on their flexibilities. Specific interactions of the negatively charged polymer with CT caused structural deformations in CT's substrate binding pocket and active site while no deformations were observed for zwitterionic and positively charged polymers. Attachment of polymers displaced water molecules from CT's surface into the polymer phase and polymer hydration correlated with the Hofmeister series.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01842eDOI Listing

Publication Analysis

Top Keywords

charged polymers
12
molecular dynamics
8
dynamics simulations
8
zwitterionic positively
8
positively charged
8
negatively charged
8
polymer
5
charged
5
structure-function-dynamics α-chymotrypsin
4
α-chymotrypsin based
4

Similar Publications

The ability to rapidly charge batteries is crucial for widespread electrification across a number of key sectors, including transportation, grid storage, and portable electronics. Nevertheless, conventional Li-ion batteries with organic liquid electrolytes face significant technical challenges in achieving rapid charging rates without sacrificing electrochemical efficiency and safety. Solid-state batteries (SSBs) offer intrinsic stability and safety over their liquid counterparts, which can potentially bring exciting opportunities for fast charging applications.

View Article and Find Full Text PDF

Direct measurement of surface interactions experienced by sticky microcapsules made from environmentally benign materials.

J Colloid Interface Sci

December 2024

Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.

We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived.

View Article and Find Full Text PDF

In microwave (MW) thermotherapy, it is challenging to regulate the temporal and spatial distribution of the temperature at the nanoscale. Herein, we report a nanothermometer for simultaneous MW heating and temperature distribution measurement. The nanothermometer was prepared by free radical polymerization with vinylbenzyl trimethylammonium chloride (VBTMACl) as the MW thermosensitizer and isopropylacrylamide (NIPAM) as the thermoresponsive unit, followed by anion exchange with fluorophore sodium 3-(4-(1,2,2-triphenylvinyl)phenoxy)propane-1-sulfonate (TPESONa).

View Article and Find Full Text PDF

Semiconductive Coordination Polymer with Multi-Channel Charge Transfer for High-Performance Direct X-ray Detection.

Angew Chem Int Ed Engl

December 2024

Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China., CHINA.

Coordination polymers (CPs) are promising for direct X-ray detection and imaging owing to higher designability and outstanding stability, however, it remains a challenge to achieve highly X-ray detection performance, particularly both high sensitivity and low detection limit at the same operating voltage. Herein, we construct a new conjugated CP {[Co(BPTTz)(DIPA)] DMA}n (1, BPTTz = 2,5-bis(pyridine-4-yl)thiazolo[5,4-d]thiazole, H2DIPA = 2,5-diiodoterephthalic acid, DMA = N, N'-dimethylacetamide), with multi-channel charge transfer by regulating the linker mediated electronic-state, which reduces carrier losses resulting from recombination or quenching, enhances the efficiency of charge separation and transfer, thus further optimizes X-ray detection performance. The semiconductor prepared based on this strategy achieves record values including the highest mobility-lifetime product (μτ, 8.

View Article and Find Full Text PDF

Polymer-based organic electrodes for rechargeable batteries are attractive due to their design flexibility, sustainability, and environmental compatibility. Unfortunately, waste management of conventional polymer materials typically involves incineration, which emits greenhouse gases. Consequently, degradable polymers should be ideal candidates for future green batteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!