There exist two major types of striatum-targeting neocortical neurons, specifically, intratelencephalic (IT) neurons and pyramidal-tract (PT) neurons. Regarding their striatal projections, it was once suggested that IT axons are extended whereas PT axons are primarily focal. However, subsequent study with an increased number of well-stained extended axons concluded that such an apparent distinction was spurious due to limited sample size. Recent work using genetically labeled neurons reintroduced the differential spatial extent of the striatal projections of IT and PT neurons through population-level analyses, complemented by observations of single axons. However, quantitative IT vs. PT comparison of a large number of axons remained to be conducted. We analyzed the data of axonal end-points of 161 IT neurons and 33 PT neurons in the MouseLight database (http://ml-neuronbrowser.janelia.org/). The number of axonal end-points in the ipsilateral striatum exhibits roughly monotonically decreasing distributions in both neuron types. Excluding neurons with no ipsilateral end-point, the distributions of the logarithm of the number of ipsilateral end-points are considerably overlapped between IT and PT neurons, although the proportion of neurons having more than 50 ipsilateral end-points is somewhat larger in IT neurons than in PT neurons. Looking at more details, among IT subpopulations in the secondary motor area (MOs), layer 5 neurons and bilateral striatum-targeting layer 2/3 neurons, but not contralateral striatum-non-targeting layer 2/3 neurons, have a larger number of ipsilateral end-points than MOs PT neurons. We also found that IT ipsilateral striatal axonal end-points are on average more widely distributed than PT end-points, especially in the medial-lateral direction. These results indicate that IT and PT striatal axons differ in the frequencies and spatial extent of end-points while there are wide varieties within each neuron type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872499PMC
http://dx.doi.org/10.3389/fncir.2019.00071DOI Listing

Publication Analysis

Top Keywords

neurons
17
axonal end-points
12
neurons ipsilateral
12
ipsilateral end-points
12
striatal axonal
8
pyramidal-tract neurons
8
mouselight database
8
striatal projections
8
extended axons
8
spatial extent
8

Similar Publications

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.

View Article and Find Full Text PDF

Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov-Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death.

View Article and Find Full Text PDF

For most researchers, academic publishing serves two goals that are often misaligned-knowledge dissemination and establishing scientific credentials. While both goals can encourage research with significant depth and scope, the latter can also pressure scholars to maximize publication metrics. Commercial publishing companies have capitalized on the centrality of publishing to the scientific enterprises of knowledge dissemination and academic recognition to extract large profits from academia by leveraging unpaid services from reviewers, creating financial barriers to research dissemination, and imposing substantial fees for open access.

View Article and Find Full Text PDF

Somatostatin-expressing neurons in the medial prefrontal cortex promote sevoflurane anesthesia in mice.

Anesthesiology

January 2025

Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, 563100, Guizhou Province, China.

Background: The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here we explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing GABA transmission to pyramidal neurons.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!