A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Motion-compensated frame rate up-conversion in carotid ultrasound images using optical flow and manifold learning. | LitMetric

Objective: Carotid ultrasonography is a reliable and non-invasive method to evaluate atherosclerosis disease and its complications. B-mode cineloops are widely used to assess the severity of atherosclerosis and its progression; ho- wever, tracking rapid wall motions of the carotid artery is still a challenging issue due the low frame rate. The aim of this paper was to present a new hybrid frame rate up-conversion (FRUC) method that accounts for motion based on manifold learning and optical flow.

Methods: In the last decade, manifold learning technique has been used to pseudo-increase the frame rate of carotid ultrasound images, but due to the dependence of this method to the number of recorded cardiac cycles and frames, a new hybrid method based on manifold learning and optical flow was proposed in this paper.

Results: Locally linear embedding (LLE) algorithm was first applied to find the relation between the frames of consecutive cardiac cycles in a low dimensional manifold. Then by applying the optical flow motion estimation algorithm, a motion compensated frame was reconstructed.

Conclusion: Consequently, a cycle with more frames was created to provide a more accurate consideration of carotid wall motion compared to the typical B-mode ultrasound ima-ges. The results revealed that our new hybrid method outperforms the pseudo-increasing frame rate scheme based on manifold learning.

Download full-text PDF

Source
http://dx.doi.org/10.5543/tkda.2019.69776DOI Listing

Publication Analysis

Top Keywords

frame rate
20
manifold learning
20
optical flow
12
based manifold
12
rate up-conversion
8
carotid ultrasound
8
ultrasound images
8
learning optical
8
cardiac cycles
8
hybrid method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!