A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amelioration of insulin resistance using the additive effect of ferulic acid and resveratrol on vesicle trafficking for skeletal muscle glucose metabolism. | LitMetric

AI Article Synopsis

  • Dysregulation of vesicle trafficking in muscle contributes to insulin resistance, and this study examines how ferulic acid (FER) and resveratrol (RSV), both known for their ability to lower blood sugar, affect glucose utilization in insulin-resistant muscle cells.
  • Using a model of insulin resistance induced by palmitate in L6 myotubes, the study found that both FER and RSV increased glucose uptake and glycogen synthesis in these cells.
  • Mechanistic investigations revealed that FER enhances endosomal activities through a specific signaling pathway, while RSV promotes glucose transporter trafficking via a different pathway, suggesting they work through distinct but complementary routes to improve glucose transport in insulin-resistant muscle.

Article Abstract

Dysregulation of vesicle trafficking in muscle is one of the factors responsible for the pathogenesis of insulin resistance (IR). Ferulic acid (FER) and resveratrol (RSV) are known to have hypoglycemic property. In this study, differentiated L6 myotubes were induced with palmitate as a model of IR. Chemical ablation of muscle vesicles was used to investigate how FER and RSV influence glucose utilization. Results showed that both FER and RSV elicit glucose uptake and promote glycogen synthesis in insulin-resistant muscle cells. Mechanistic studies further showed that FER markedly enhances the transferrin receptor-containing endosomal compartment activities via phosphoinositide 3-kinase (PI3K)/atypical protein kinase C-dependent pathway, while RSV facilitates glucose transporter storage vesicles (GSV) trafficking via an exercise-like effect of conventional protein kinase C/5'-adenosine monophosphate-activated protein kinase (AMPK) modulation. Therefore, these two phenolic compounds promoted glucose transport through two separate routes, and they had an additive effect on the increase of glucose uptake in insulin-resistant muscle cells. These findings provide a basis for the understanding of the antidiabetic potential of RSV and FER combination.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.6561DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
insulin resistance
8
ferulic acid
8
vesicle trafficking
8
fer rsv
8
glucose uptake
8
insulin-resistant muscle
8
muscle cells
8
glucose
6
muscle
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!