What is the central question of the study? Does the action of l-citrulline, which has been shown to augment performance in animals and athletes, possibly via increasing mitochondrial function, translate to obese animals, and does this improve glycaemia? What is the main finding and its importance? Chronic supplementation with l-citrulline improves not only exercise capacity, but also glycaemia in obese mice, which would be beneficial as obese individuals are at increased risk for type 2 diabetes. However, l-citrulline supplementation also caused a mild impairment in insulin signalling and insulin tolerance in obese mice. ABSTRACT: l-Citrulline is an organic α-amino acid that has been shown to have a number of salutary actions on whole-body physiology, including reducing muscle wasting and augmenting exercise and muscle performance. The latter has been suggested to arise from elevations in mitochondrial function. Because enhancing mitochondrial function has been proposed as a novel strategy to mitigate insulin resistance, our goal was to determine whether supplementation with l-citrulline could also improve glycaemia in an experimental mouse model of obesity. We hypothesized that l-citrulline treatment would improve glycaemia in obese mice, and this would be associated with elevations in skeletal muscle mitochondrial function. Ten-week-old C57BL/6J mice were fed either a low-fat (10% kcal from lard) or a high-fat (60% kcal from lard) diet, while receiving drinking water supplemented with either vehicle or l-citrulline (0.6 g l ) for 15 weeks. Glucose homeostasis was assessed via glucose/insulin tolerance testing, while in vivo metabolism was assessed via indirect calorimetry, and forced exercise treadmill testing was utilized to assess endurance. As expected, obese mice supplemented with l-citrulline exhibited an increase in exercise capacity, which was associated with an improvement in glucose tolerance. Consistent with augmented mitochondrial function, we observed an increase in whole body oxygen consumption rates in obese mice supplemented with l-citrulline. Surprisingly, l-citrulline supplementation worsened insulin tolerance and reduced insulin signalling in obese mice. Taken together, although l-citrulline supplementation improves both glucose tolerance and exercise capacity in obese mice, caution must be applied with its broad use as a nutraceutical due to a potential deterioration of insulin sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/EP088109 | DOI Listing |
Mol Ther
January 2025
Department of Surgery, University of California San Diego, La Jolla, CA, 92093, United States; Department of Dermatology, University of California San Diego, La Jolla, CA, 92093, United States. Electronic address:
Small extracellular vesicles (sEVs) mediate intercellular signaling to coordinate proliferation of cell types that promote re-epithelialization of skin following injury. Cyclin-dependent kinase 1 (CDK1) drives cell division and is a key regulator of entry to cell cycle. To understand the potential of sEV-mediated delivery of CDK1 to reverse impaired wound healing, we generated CDK1-loaded sEVs (CDK1-sEVs) and evaluated their ability to mediate cell proliferation, re-epithelialization and downstream signaling responses in the wound bed.
View Article and Find Full Text PDFMol Med
January 2025
Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:
Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.
View Article and Find Full Text PDFNutrients
January 2025
Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia.
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China.
Background/objectives: UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!