ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960443 | PMC |
http://dx.doi.org/10.15252/embj.2019102586 | DOI Listing |
Int J Mol Sci
January 2025
Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, 6-1-2, Kamikitazawa, Setagaya-Ku, Tokyo 113-8613, Japan.
We previously isolated a cDNA clone for galactosylceramide expression factor 1, which is the rat homologue of hepatocyte-growth-factor-regulated tyrosine kinase substrate (HGS) and induces galactosylceramide expression and morphological changes in COS-7 cells, and reported that overexpression of HGS induced morphological changes in canine kidney epithelial MDCK cells. HGS is a component of the endosomal sorting complexes required for transport machinery that mediates endosomal multivesicle body formation. In this study, the overexpression of HGS induced epithelial-mesenchymal transition and caused transformation in MDCK cells, whereas the overexpression of a coiled-coil domain of HGS inhibited induction of epithelial-mesenchymal transition by HGF stimulation.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
: Hypertension (HTN) constitutes a significant global health burden, yet the specific genetic variant responsible for blood pressure regulation remains elusive. This study investigates the genetic basis of hypertension in the Jordanian population, focusing on gene variants related to ion channels and transporters, including , , , , , , , , and . : This research involved 200 hypertensive patients and 224 healthy controls.
View Article and Find Full Text PDFSci Rep
January 2025
Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA.
Genotype-informed anticancer therapies such as BRAF inhibitors can show remarkable clinical efficacy in BRAF-mutant melanoma; however, drug resistance poses a major hurdle to successful cancer treatment. Many resistance events to targeted therapies have been identified, suggesting a complex path to improve therapeutics. Here, we showed the utility of a piggyBac transposon activation mutagenesis screen for the efficient identification of genes that are resistant to BRAF inhibition in melanoma.
View Article and Find Full Text PDFCell Rep
January 2025
Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands. Electronic address:
Abscission is the last step of cell division. It separates the two sister cells and consists of cutting the cytoplasmic bridge. Abscission is mediated by the ESCRT membrane remodeling machinery, which also triggers the severing of a thick bundle of microtubules.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
Osteoporosis is a systemic skeletal disorder characterized by reduced bone density and an increased risk of fractures, particularly prevalent in the aging population. Osteoporotic complications, including vertebral compression fractures, hip fractures, and distal forearm fractures, affect over 8.9 million individuals globally, placing a significant economic strain on healthcare systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!