Unveiling dimensions of stability in complex ecological networks.

Proc Natl Acad Sci U S A

ISEM, CNRS, Univ Montpellier, EPHE, IRD, 34095 Montpellier, France.

Published: December 2019

Understanding the stability of ecological communities is a matter of increasing importance in the context of global environmental change. Yet it has proved to be a challenging task. Different metrics are used to assess the stability of ecological systems, and the choice of one metric over another may result in conflicting conclusions. Although each of the multitude of metrics is useful for answering a specific question about stability, the relationship among metrics is poorly understood. Such lack of understanding prevents scientists from developing a unified concept of stability. Instead, by investigating these relationships we can unveil how many dimensions of stability there are (i.e., in how many independent components stability metrics can be grouped), which should help build a more comprehensive concept of stability. Here we simultaneously measured 27 stability metrics frequently used in ecological studies. Our approach is based on dynamical simulations of multispecies trophic communities under different perturbation scenarios. Mapping the relationships between the metrics revealed that they can be lumped into 3 main groups of relatively independent stability components: early response to pulse, sensitivities to press, and distance to threshold. Selecting metrics from each of these groups allows a more accurate and comprehensive quantification of the overall stability of ecological communities. These results contribute to improving our understanding and assessment of stability in ecological communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926024PMC
http://dx.doi.org/10.1073/pnas.1904470116DOI Listing

Publication Analysis

Top Keywords

stability ecological
16
stability
12
ecological communities
12
dimensions stability
8
concept stability
8
stability metrics
8
metrics
7
ecological
6
unveiling dimensions
4
stability complex
4

Similar Publications

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

Study on the Influence of Rural Highway Landscape Green Vision Rate on Driving Load Based on Factor Analysis.

Sensors (Basel)

January 2025

School of Civil Engineering Architecture and the Environment, Hubei University of Technology, Wuhan 430068, China.

The green vision rate of rural highway greening landscape is a key factor affecting the driver's visual load. Based on this, this paper uses the eye tracking method to study the visual characteristics of drivers in different green vision environments on rural highways in Xianning County. Based on the HSV color space model, this paper obtains four sections of rural highway with a green vision rate of 10~20%, green vision rate of 20~30%, green vision rate of 30~40%, and green vision rate of 40~50%.

View Article and Find Full Text PDF

Mechanical Strength and Mechanism Analysis of Silt Soil Cured by Straw Ash-Calcium Carbide Slag.

Materials (Basel)

January 2025

Heilongjiang Provincial Key Laboratory of Road Structure and Green Ecological Technology, Northeast Forestry University, Harbin 150090, China.

Large-scale engineering projects frequently involve pit excavation and wetland landfill operations, resulting in significant silt accumulation that occupies land and adversely affects the environment. Curing technology offers a solution for reusing this waste silt. In this study, straw ash and calcium carbide slag are proposed as effective curing agents for silt soil.

View Article and Find Full Text PDF

Construction and Properties of Wood-Based Tannin-Iron-Complexed Photothermal Material .@Fe-GA for Solar Seawater Desalination System.

Materials (Basel)

January 2025

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China.

Desalinating seawater is a crucial method for addressing the shortage of freshwater resources. High-efficiency, low-cost, and environmentally friendly desalination technologies are key issues that urgently need to be addressed. This work used as a matrix material and prepared @Fe-GA through a complexation reaction to enhance the water evaporation rate and photothermal conversion efficiency of seawater desalination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!