AI Article Synopsis

  • The study examines the use of flexible bamboo poles for load carrying in Asia, highlighting potential benefits like reduced energy consumption but noting inconsistencies in prior research due to inexperienced carriers.
  • It utilizes a trajectory optimization model to understand how experienced carriers adapt their gait to minimize energy costs when using both compliant and rigid poles.
  • Results indicate that experienced carriers' changes in step frequency align with model predictions, suggesting that their strategies optimize for energy efficiency when carrying heavy loads with compliant poles.

Article Abstract

In Asia, flexible bamboo poles are routinely used to carry substantial loads on the shoulder. Various advantages have been attributed to this load-carrying strategy (e.g. reduced energy consumption), but experimental evidence remains inconsistent - possibly because carriers in previous studies were inexperienced. Theoretical models typically neglect the individual's capacity to optimize interactions with the oscillating load, leaving the complete dynamics underexplored. This study used a trajectory optimization model to predict gait adaptations that minimize work-based costs associated with carrying compliant loads and compared the outcomes with naturally selected gait adaptations of experienced pole carriers. Gait parameters and load interactions (e.g. relative amplitude and frequency, phase) were measured in rural farmworkers in Vietnam. Participants carried a range of loads with compliant and rigid poles and the energetic consequences of step frequency adjustments were evaluated using the model. When carrying large loads, the empirical step frequency changes associated with pole type (compliant versus rigid) were largely consistent with model predictions, in terms of direction (increase or decrease) and magnitude (by how much). Work-minimizing strategies explain changes in leg compliance, harmonic frequency oscillations and fluctuations in energetic cost associated with carrying loads on a compliant bamboo pole.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.203760DOI Listing

Publication Analysis

Top Keywords

flexible bamboo
8
bamboo poles
8
gait adaptations
8
associated carrying
8
loads compliant
8
step frequency
8
loads
5
load carrying
4
carrying flexible
4
poles optimization
4

Similar Publications

An integrated wearable microfluidic biosensor for simultaneous detection of multiple biomarkers in sweat.

Talanta

December 2024

Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, 644000, PR China. Electronic address:

Simultaneous detection of biomarkers in sweat is crucial for comprehensive health assessment and personalized monitoring. However, the low sweat secretion rate and low metabolite concentrations present challenges for developing non-invasive wearable sensors. This study aims to develop a flexible wearable biosensor for simultaneous detection of low-concentration biomarkers in sweat, enabling comprehensive health assessment.

View Article and Find Full Text PDF

Sasa senanensis (a dwarf bamboo), an evergreen herbaceous plant native to the cool temperate regions of eastern Asia, endures seasonal temperature fluctuations and significant variations in light intensity typical for understory plants. Following snowmelt in early spring, the light intensity received by Sasa leaves surges, then diminishes as the canopy of upper deciduous trees develops. The current-year leaves of S.

View Article and Find Full Text PDF

Thin and Flexible PANI/PMMA/CNF Forest Films Produced via a Two-Step Floating Catalyst Chemical Vapor Deposition.

Materials (Basel)

November 2024

Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece.

In this paper, we explore a straightforward two-step method to produce high-purity, vertically aligned multi-walled carbon nanofibres (MWCNFs) via chemical vapor deposition (CVD). Two distinct solutions are utilized for this CVD method: a catalytic solution consisting of ferrocene and acetonitrile (ACN) and a carbon source solution with camphor and ACN. The vapors of the catalytic solution inserted in the reaction chamber through external boiling result in a floating catalyst CVD approach that produces vertically aligned CNFs in a consistent manner.

View Article and Find Full Text PDF

Directionally arranged flexible bamboo/rubber materials with high cushion performance.

Int J Biol Macromol

December 2024

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China. Electronic address:

Composites derived from plant fibers are promising reinforcing materials for engineering because of their renewable and easily available characteristics. In this study, a simple pretreatment method was developed to fabricate structurally intact bamboo cellulose scaffolds. Water-stable, flexible, impact-resistant, and high damping ratio bamboo-based rubber composites were synthesized using carboxylated styrene-butadiene latex-impregnated 3D bamboo scaffolds.

View Article and Find Full Text PDF

Multiscale cellulose-based optical management films with tunable transparency and haze fabricated by different bamboo components and mechanical defibrillation approaches.

Carbohydr Polym

January 2025

International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China. Electronic address:

Article Synopsis
  • Renewable cellulose from bamboo and parenchyma cells is being used to create biomass-based optical films that can be adjusted for transparency and haze levels.
  • Different separation and processing methods like ultrasonication, blending, and microfluidization were employed to produce these films with varying properties.
  • The study highlights a sustainable approach to developing films that balance transparency, haze, and strength, indicating potential applications in anti-glare technology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!