CGRRF1, a growth suppressor, regulates EGFR ubiquitination in breast cancer.

Breast Cancer Res

Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA.

Published: December 2019

Background: CGRRF1 is a growth suppressor and consists of a transmembrane domain and a RING-finger domain. It functions as a RING domain E3 ubiquitin ligase involved in endoplasmic reticulum-associated degradation. The expression of CGRRF1 is decreased in cancer tissues; however, the role of CGRRF1 in breast cancer and the mechanism(s) of its growth suppressor function remain to be elucidated.

Methods: To investigate whether CGRRF1 inhibits the growth of breast cancer, we performed MTT assays and a xenograft experiment. Tumors harvested from mice were further analyzed by reverse phase protein array (RPPA) analysis to identify potential substrate(s) of CGRRF1. Co-immunoprecipitation assay was used to verify the interaction between CGRRF1 and its substrate, followed by in vivo ubiquitination assays. Western blot, subcellular fractionation, and reverse transcription quantitative polymerase chain reaction (qRT-PCR) were performed to understand the mechanism of CGRRF1 action in breast cancer. Publicly available breast cancer datasets were analyzed to examine the association between CGRRF1 and breast cancer.

Results: We show that CGRRF1 inhibits the growth of breast cancer in vitro and in vivo, and the RING-finger domain is important for its growth-inhibitory activity. To elucidate the mechanism of CGRRF1, we identified EGFR as a new substrate of CGRRF1. CGRRF1 ubiquitinates EGFR through K48-linked ubiquitination, which leads to proteasome degradation. In addition to regulating the stability of EGFR, knockout of CGRRF1 enhances AKT phosphorylation after EGF stimulation. By analyzing the breast cancer database, we found that patients with low CGRRF1 expression have shorter survival. As compared to normal breast tissues, the mRNA levels of CGRRF1 are lower in breast carcinomas, especially in HER2-positive and basal-like breast cancers. We further noticed that CGRRF1 promoter methylation is increased in breast cancer as compared to that in normal breast tissue, suggesting that CGRRF1 is epigenetically modified in breast cancer. Treatment of 5-azactidine and panobinostat restored CGRRF1 expression, supporting that the promoter of CGRRF1 is epigenetically modified in breast cancer. Since 5-azactidine and panobinostat can increase CGRRF1 expression, they might be potential therapies for breast cancer treatment.

Conclusion: We demonstrated a tumor-suppressive function of CGRRF1 in breast cancer and identified EGFR as its target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894136PMC
http://dx.doi.org/10.1186/s13058-019-1212-2DOI Listing

Publication Analysis

Top Keywords

breast cancer
48
cgrrf1
22
breast
17
cancer
13
growth suppressor
12
cgrrf1 breast
12
cgrrf1 expression
12
cgrrf1 growth
8
ring-finger domain
8
cgrrf1 inhibits
8

Similar Publications

Purpose: Male breast cancer is an understudied disease with unique clinicopathological features. This study aims to evaluate the predictive value of the Clinical Treatment Score post-5 years (CTS5) in estimating late recurrence risk in estrogen receptor-positive (ER+) male breast cancer patients.

Methods: This retrospective study includes 65,711 ER+ early male (n = 611) and female (n = 65,100) breast cancer patients from the Surveillance, Epidemiology, and End Results (SEER) database diagnosed between 2010 and 2018.

View Article and Find Full Text PDF

Background: Risk reducing mastectomy (RRM) is an option for women with pathogenic germline variants in BRCA1 or BRCA2 (BRCA1/2). This study investigates and compares RRM-uptake among Norwegian BRCA1/2 carriers from 2008 to 2021, temporal trends, and incidence of breast cancer (BC) after surgery.

Methods: BRCA1/2 carriers without prior breast or ovarian cancer, tested at Oslo University Hospital between January 1st 2008 and December 31st 2021 were included in the study.

View Article and Find Full Text PDF

Linking tumor immune infiltration to enhanced longevity in recurrence-free breast cancer.

ESMO Open

January 2025

Translational Genomics and Targeted Therapies in Solid Tumors group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Institute of Cancer and Blood Diseases, Hospital Clinic of Barcelona, Barcelona, Spain; Reveal Genomics, Barcelona, Spain. Electronic address:

Background: The infiltration of tumor-infiltrating B cells and plasma cells in early-stage breast cancer has been associated with a reduced risk of distant metastasis. However, the influence of B-cell tumor infiltration on overall patient survival remains unclear.

Materials And Methods: This study explored the relationship between an antitumor immune response, measured by a 14-gene B-cell/immunoglobulin (IGG) signature, and mortality risk in 9638 breast cancer patients across three datasets.

View Article and Find Full Text PDF

Novel MRI-based Hyper-Fused Radiomics for Predicting Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer.

Acad Radiol

January 2025

Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.). Electronic address:

Rationale And Objectives: To propose a novel MRI-based hyper-fused radiomic approach to predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer (BC).

Materials And Methods: Pretreatment dynamic contrast-enhanced (DCE) MRI and ultra-multi-b-value (UMB) diffusion-weighted imaging (DWI) data were acquired in BC patients who received NAT followed by surgery at two centers. Hyper-fused radiomic features (RFs) and conventional RFs were extracted from DCE-MRI or UMB-DWI.

View Article and Find Full Text PDF

For the first time, our study provides a comprehensive examination of the anti-cancer effects of structural isomers of carene in breast cancer cells, specifically focusing on cell cycle inhibition and the induction of apoptosis. We utilized the hydro-distillation method to extract Piper nigrum seed essential oil (PNS-EO) and identified its bioactive components through gas chromatography-mass spectrometry (GC-MS) analysis. A total of 46 bioactive compounds were isolated via hydro-distillation, identified through GC-MS analysis, and validated by co-injection using GC analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!