Background Translocation of miR-181c into cardiac mitochondria downregulates the mitochondrial gene, mt-COX1. miR-181c/d hearts experience less oxidative stress during ischemia/reperfusion (I/R) and are protected against I/R injury. Additionally, miR-181c overexpression can increase mitochondrial matrix Ca ([Ca]), but the mechanism by which miR-181c regulates [Ca] is unknown. Methods and Results By RNA sequencing and analysis, here we show that hearts from miR-181c/d mice overexpress nuclear-encoded Ca regulatory and metabolic pathway genes, suggesting that alterations in miR-181c and mt-COX1 perturb mitochondria-to-nucleus retrograde signaling and [Ca] regulation. Quantitative polymerase chain reaction validation of transcription factors that are known to initiate retrograde signaling revealed significantly higher Sp1 (specificity protein) expression in the miR-181c/d hearts. Furthermore, an association of Sp1 with the promoter region of MICU1 was confirmed by chromatin immunoprecipitation-quantitative polymerase chain reaction and higher expression of MICU1 was found in the miR-181c/d hearts. Conversely, downregulation of Sp1 by small interfering RNA decreased MICU1 expression in neonatal mouse ventricular myocytes. Changes in PDH activity provided evidence for a change in [Ca] via the miR-181c/MICU1 axis. Moreover, this mechanism was implicated in the pathology of I/R injury. When MICU1 was knocked down in the miR-181c/d heart by lentiviral expression of a short-hairpin RNA against MICU1, cardioprotective effects against I/R injury were abrogated. Furthermore, using an in vitro I/R model in miR-181c/d neonatal mouse ventricular myocytes, we confirmed the contribution of both Sp1 and MICU1 in ischemic injury. Conclusions miR-181c regulates mt-COX1, which in turn regulates MICU1 expression through the Sp1-mediated mitochondria-to-nucleus retrograde pathway. Loss of miR-181c can protect the heart from I/R injury by modulating [Ca] through the upregulation of MICU1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951067PMC
http://dx.doi.org/10.1161/JAHA.119.012919DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
mir-181c/d hearts
12
micu1
9
mir-181c regulates
8
mitochondria-to-nucleus retrograde
8
retrograde signaling
8
polymerase chain
8
chain reaction
8
micu1 expression
8
neonatal mouse
8

Similar Publications

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).

Chin J Nat Med

January 2025

Department of Pharmacy, The Fourth College of Clinical Medicine, Xinjiang Medical University, Urumqi 830000, China; Department of Pharmacy, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi 830000, China. Electronic address:

Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD.

View Article and Find Full Text PDF

Ginkgolide B binds to GPX4 and FSP1 to alleviate cerebral ischemia/reperfusion injury in rats.

Toxicol Appl Pharmacol

January 2025

Department of Neurology, Yantaishan Hospital, Yantai, Shandong, China. Electronic address:

Ischemia/reperfusion (I/R) injury can increase the anomalous permeability of the blood-brain barrier and the risk of hemorrhagic conversion. Ginkgolide B (Gin B) has been recognized for its neuroprotective properties in stroke treatment. This study aimed to analyze the association of Gin B with GPX4 and FSP1 in cerebral I/R injury treatment.

View Article and Find Full Text PDF

eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.

Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with HO (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!