The magnetic field evolution of ground spin states of the stacked planar triangular antiferromagnet with antiferromagnetic interlayer interaction J is explored using a minimal 3D classical Heisenberg model. A bi-quadratic coupling is also used to mimic the effect of spin fluctuations (Zhitomirsky 2015 J. Phys.: Conf. Ser. 592 012110) which are known to stabilize the magnetization plateau. A single ion anisotropy is included and states with a magnetic field applied in the ab plane and along the c axis are determined. For [Formula: see text]-plane, an additional new state, in contrast to 2D model (Zhitomirsky 2015 J. Phys.: Conf. Ser. 592 012110), is obtained with weak interlayer interaction, while the magnetization plateau vanishes at large J and other new states with z components of spins emerge. For [Formula: see text]-axis, an extra state, compared with 2D model, is obtained with a weak interlayer interaction. When J is large enough, only the state corresponding to the Umbrella phase in 2D model exits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab5ea6 | DOI Listing |
Astrobiology
January 2025
Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany.
The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Kyungpook National University, Daegu, 41566, South Korea.
The construction of multilevel magnetic states using materials with perpendicular magnetic anisotropy (PMA) offers a novel approach to enhancing the storage density and read/write efficiency of nonvolatile magnetic memory devices. In this study, optically readable multilevel magnetic domain states are achieved by inducing asymmetric interlayer interactions and decoupling the magnetic reversal behavior of individual ferromagnetic (FM) layers in exchange-biased FM multilayers with PMA. Hepta-level magnetic domain states are formed in [Co/Pt] FM multilayers grown on an antiferromagnetic FeO layer within a relatively low magnetic field range of ∼±400 Oe.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China.
Weaving, a pivotal technique in human construction activities since the Neolithic era, remains unattainable in modern concrete construction. Here, a novel particle-polymer coalescence strategy is proposed, which involves electrostatic, bridging, coordinating, and hydrogen bonding interactions, to establish balanced particle cohesion, enabling the fabrication of stretchable cement slurry. The bending, knotting, coiling, winding, and interlacing of cement filaments for structural textiles is successfully realized beyond traditional formwork casting, grouting, and 3D-printing, and fabricate the first-ever Chinese knot woven with cement.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Membranes (Basel)
January 2025
Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore.
The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!