Cytotoxic immunoglobulin G antibodies are an essential component of therapeutic approaches aimed at depleting self-reactive or malignant cells. More recent evidence suggests that the tissue in which the target cell resides influences the underlying molecular and cellular pathways responsible for cytotoxic antibody activity. By studying cytotoxic IgG activity directed against natural killer cells in primary and secondary immunological organs, we show that distinct organ-specific effector pathways are responsible for target cell depletion. While in the bone marrow, the classical complement pathway and the high-affinity Fcγ-receptor I expressed on organ-resident macrophages were both involved in removing opsonized target cells; in the spleen and blood, all activating FcγRs but not the classical complement pathway were critical for target cell killing. Our study suggests that future strategies aimed at optimizing overall cytotoxic antibody activity may need to consider organ-specific pathways to achieve a maximal therapeutic effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2019.10.111 | DOI Listing |
Breast Cancer
January 2025
Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).
View Article and Find Full Text PDFNat Immunol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
Shiga toxin (Stx)-induced hemolytic uremic syndrome (HUS) poses a life-threatening complication for which a definitive treatment remains elusive. To exert its cytotoxic effect on renal cells, Stx must be delivered from the infected intestines to the kidney. However, the mechanism underlying Stx delivery remains unclear.
View Article and Find Full Text PDFPurpose: Outcomes for patients with advanced sarcomas are poor and there is a high unmet need to develop novel therapies. The purpose of this phase I study was to define the safety and efficacy of botensilimab (BOT), an Fc-enhanced anti-cytotoxic lymphocyte-association protein-4 antibody, plus balstilimab (BAL), an anti-PD-1 antibody, in advanced sarcomas.
Methods: BOT was administered intravenously (IV) at 1 mg/kg or 2 mg/kg once every 6 weeks in combination with BAL IV at 3 mg/kg once every 2 weeks for up to 2 years.
J Virol
January 2025
MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!