A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bile acids inhibit cholinergic constriction in proximal and peripheral airways from humans and rodents. | LitMetric

Duodenogastroesophageal reflux (DGER) is associated with chronic lung disease. Bile acids (BAs) are established markers of DGER aspiration and are important risk factors for reduced post-transplant lung allograft survival by disrupting the organ-specific innate immunity, facilitating airway infection and allograft failure. However, it is unknown whether BAs also affect airway reactivity. We investigated the acute effects of 13 BAs detected in post-lung-transplant surveillance bronchial washings (BW) on airway contraction. We exposed precision-cut slices from human and mouse lungs to BAs and monitored dynamic changes in the cross-sectional luminal area of peripheral airways using video phase-contrast microscopy. We also used guinea pig tracheal rings in organ baths to study BA effects in proximal airway contraction induced by electrical field stimulation. We found that most secondary BAs at low micromolar concentrations strongly and reversibly relaxed smooth muscle and inhibited peripheral airway constriction induced by acetylcholine but not by noncholinergic bronchoconstrictors. Similarly, secondary BAs strongly inhibited cholinergic constrictions in tracheal rings. In contrast, TC-G 1005, a specific agonist of the BA receptor Takeda G protein-coupled receptor 5 (TGR5), did not cause airway relaxation, and deletion in knockout mice did not affect BA-induced relaxation, suggesting that this receptor is not involved. BAs inhibited acetylcholine-induced inositol phosphate synthesis in human airway smooth muscle cells overexpressing the muscarinic M3 receptor. Our results demonstrate that select BAs found in BW of patients with lung transplantation can affect airway reactivity by inhibiting the cholinergic contractile responses of the proximal and peripheral airways, possibly by acting as antagonists of M3 muscarinic receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474253PMC
http://dx.doi.org/10.1152/ajplung.00242.2019DOI Listing

Publication Analysis

Top Keywords

peripheral airways
12
bile acids
8
proximal peripheral
8
bas
8
airway
8
affect airway
8
airway reactivity
8
airway contraction
8
tracheal rings
8
secondary bas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!