A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

mpCRISTAR: Multiple Plasmid Approach for CRISPR/Cas9 and TAR-Mediated Multiplexed Refactoring of Natural Product Biosynthetic Gene Clusters. | LitMetric

Multiplexed refactoring provides a tool for rapid transcriptional optimization of biosynthetic gene clusters (BGCs) through simultaneous replacement of multiple native promoters with synthetic counterparts. Here, we present the mpCRISTAR, a multiple plasmid-based CRISPR/Cas9 and TAR (transformation-associated recombination), that enables a rapid and highly efficient, multiplexed refactoring of natural product BGCs in yeast. A series of CRISPR plasmids with different auxotrophic markers that could be stably maintained in yeast cells were constructed to express multiple gRNAs simultaneously. We demonstrated the multiplexing capacity of mpCRISTAR using the actinorhodin biosynthetic gene cluster as a model cluster. mpCRISTAR1, in which each CRISPR plasmid expresses one gRNA, allows for simultaneous replacement of up to four promoter sites with nearly 100% efficiency. By expressing two gRNAs from one CRISPR plasmid, termed mpCRISTAR2, we simultaneously replaced a total of six and eight promoter sites with 68% and 32% efficiency, respectively. The mpCRISTAR could be performed iteratively using two different auxotrophic markers, allowing for refactoring of any type of BGC regardless of their operon complexities. The mpCRISTAR platform we report here would become a useful tool for the discovery of new natural products from transcriptionally silent biosynthetic gene clusters present in microbial genomes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.9b00382DOI Listing

Publication Analysis

Top Keywords

biosynthetic gene
16
multiplexed refactoring
12
gene clusters
12
mpcristar multiple
8
refactoring natural
8
natural product
8
simultaneous replacement
8
auxotrophic markers
8
crispr plasmid
8
promoter sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!