Linking Macroscopic and Nanoscopic Ionic Conductivity: A Semiempirical Framework for Characterizing Grain Boundary Conductivity in Polycrystalline Ceramics.

ACS Appl Mater Interfaces

School for Engineering of Matter, Transport and Energy , Arizona State University, 501 E. Tyler Mall , Tempe , Arizona 85287-6106 , United States.

Published: January 2020

Understanding the chemical and charge transport properties of grain boundaries (GBs) with high point defect concentrations (beyond the dilute solution limit) in polycrystalline materials is critical for developing ion-conducting solids for electrochemical energy conversion and storage. Elucidation and optimization of GBs are hindered by large variations in atomic structure, composition, and chemistry within nanometers or Ångstroms of the GB interface, which limits a fundamental understanding of electrical transport across and along GBs. Here we employ a novel correlated approach that is generally applicable to polycrystalline materials whose properties are affected by GB composition or chemistry. We demonstrate the connection between the nanoscopic chemical and transport properties of individual boundaries and the macroscopic ionic conductivity in oxygen-conducting PrGdCeO. The key finding is that GBs with higher solute concentration have lower activation energy for cross-GB ion conduction through a polycrystalline conductor. The resultant semiempirical framework presented here provides a tool for understanding, designing and optimizing polycrystalline ionic conductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b15933DOI Listing

Publication Analysis

Top Keywords

ionic conductivity
8
semiempirical framework
8
transport properties
8
polycrystalline materials
8
composition chemistry
8
polycrystalline
5
linking macroscopic
4
macroscopic nanoscopic
4
nanoscopic ionic
4
conductivity semiempirical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!