Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A promising new therapeutic target for the treatment of Alzheimer's disease (AD) is the circadian system. Although patients with AD are known to have abnormal circadian rhythms and suffer sleep disturbances, the role of the molecular clock in regulating amyloid-beta (Aβ) pathology is still poorly understood. Here, we explored how the circadian repressors REV-ERBα and β affected Aβ clearance in mouse microglia. We discovered that, at Circadian time 4 (CT4), microglia expressed higher levels of the master clock protein BMAL1 and more rapidly phagocytosed fibrillary Aβ (fAβ ) than at CT12. BMAL1 directly drives transcription of REV-ERB proteins, which are implicated in microglial activation. Interestingly, pharmacological inhibition of REV-ERBs with the small molecule antagonist SR8278 or genetic knockdown of REV-ERBs-accelerated microglial uptake of fAβ and increased transcription of BMAL1. SR8278 also promoted microglia polarization toward a phagocytic M2-like phenotype with increased P2Y receptor expression. Finally, constitutive deletion of Rev-erbα in the 5XFAD model of AD decreased amyloid plaque number and size and prevented plaque-associated increases in disease-associated microglia markers including TREM2, CD45, and Clec7a. Altogether, our work suggests a novel strategy for controlling Aβ clearance and neuroinflammation by targeting REV-ERBs and provides new insights into the role of REV-ERBs in AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996949 | PMC |
http://dx.doi.org/10.1111/acel.13078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!