Summary: Patterns of mutational correlations, learnt from protein sequences, have been shown to be informative of co-evolutionary sectors that are tightly linked to functional and/or structural properties of proteins. Previously, we developed a statistical inference method, robust co-evolutionary analysis (RoCA), to reliably predict co-evolutionary sectors of proteins, while controlling for statistical errors caused by limited data. RoCA was demonstrated on multiple viral proteins, with the inferred sectors showing close correspondences with experimentally-known biochemical domains. To facilitate seamless use of RoCA and promote more widespread application to protein data, here we present a standalone cross-platform package 'RocaSec' which features an easy-to-use GUI. The package only requires the multiple sequence alignment of a protein for inferring the co-evolutionary sectors. In addition, when information on the protein biochemical domains is provided, RocaSec returns the corresponding statistical association between the inferred sectors and biochemical domains.

Availability And Implementation: The RocaSec software is publicly available under the MIT License at https://github.com/ahmedaq/RocaSec.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btz890DOI Listing

Publication Analysis

Top Keywords

co-evolutionary sectors
12
robust co-evolutionary
8
co-evolutionary analysis
8
inferred sectors
8
biochemical domains
8
co-evolutionary
5
sectors
5
rocasec standalone
4
standalone gui-based
4
gui-based package
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!