Removal of emerging pathogenic bacteria using metal-exchanged natural zeolite bead filter.

Water Sci Technol

Zagreb Wastewater - Management and Operation Ltd, Culinecka cesta 287, Zagreb, Croatia.

Published: September 2019

Hospital wastewaters can become a route for dissemination of antibiotic-resistant bacteria to the environment if not properly treated. Some of these bacteria are able to survive conventional disinfection treatments (e.g. chlorination, UV irradiation), which evokes the need for novel disinfection methods. The metal-exchanged zeolites were tested as novel antibacterial agents for wastewater treatment. The natural zeolite clinoptilolite enriched with silver (AgNZ) showed far better antibacterial activity towards hospital pathogenic bacterium Acinetobacter baumannii when compared with copper-exchanged zeolite (CuNZ), with minimal bactericidal concentration of 0.25-2 (AgNZ) compared with 32-64 mg L (CuNZ) in a batch system and respective log 5.6 reduction compared with log 0.5 reduction in a flow system with pure bacterial culture. In the flow system with real effluent wastewater from the treatment plant, the removal of carbapenem-resistant bacteria using AgNZ was 90-100% during the 4 days of the experimental run. These results indicate that the AgNZ efficiently removes pathogenic bacteria from the wastewater, including A. baumannii, and is promising as a disinfectant material in a bead filter system.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2019.348DOI Listing

Publication Analysis

Top Keywords

pathogenic bacteria
8
natural zeolite
8
bead filter
8
wastewater treatment
8
log reduction
8
flow system
8
bacteria
5
removal emerging
4
emerging pathogenic
4
bacteria metal-exchanged
4

Similar Publications

Synthetic rational design of live-attenuated Zika viruses based on a computational model.

Nucleic Acids Res

January 2025

SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.

Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.

View Article and Find Full Text PDF

Bongkrekic acid (BA) toxin, produced by Burkholderia gladioli pathovar cocovenenans bacteria, has been implicated in foodborne illness outbreaks. BA poisoning is associated with rice noodle consumption; hence, this study investigated B. cocovenenans growth and BA production in wet rice noodles comprising varying starch ratios, starch types, rice nutrients, and saccharides.

View Article and Find Full Text PDF

Background: Leptospirosis is a widespread zoonosis caused by bacteria in the genus Leptospira. Basic epidemiological information is crucial to mitigating disease risk but is lacking for leptospirosis; notably, the hosts responsible for maintaining Leptospira remain largely unknown. Frequently observed near human habitations, hedgehogs (Erinaceus europaeus) are taken to wildlife rescue centres when found sick or injured.

View Article and Find Full Text PDF

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Background: The incidence of invasive infection of (Kp) in the community is increasing every year, and the high disability and mortality rates associated with them pose great challenges in clinical practice. This study aimed to explore the clinical and microbiological characteristics of Kp invasive infection in the community.

Method: This study investigated the data of 291 patients with Kp infection in the community in three hospitals (Zhongshan City, Guangdong Province) from January 2020 to August 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!