Targeting the interaction interface is an effective strategy to obtain programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-L1) nanobody blockers. To validate this strategy, the interaction interface between PD-1 and the PD-L1 extracellular domain were analyzed using Cn3D 4.1. The peptide PD-1 located at the interface of PD-1 was selected as the antigen to screen nanobodies from a humanized nanobody phage display library. Six different nanobodies were screened, with molecular weights of 12 ∼ 13 kDa, excluding a single basic protein. The nanobody with the longest CDR3 region, termed PD-1-Nb-B20, was selected for further analysis. For mass production, the C-terminal His6-tagged nanobody coding sequence was optimized and cloned into pET-21b for over-expression under the T7 promoter in BL21 (DE3). PD-1-Nb-B20 was expressed and pancreatic adenocarcinoma cells BxPC-3 over-expressing PD-L1 were selected for nanobody competitive inhibition assays. The purified nanobodies significantly inhibited PD-1 binding to the surface of target cells, indicating their ability to block the PD-1/PD-L1 interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10826068.2019.1692217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!