The phycobilisome (PBS) is the cyanobacterial antenna complex which transfers absorbed light energy to the photosystem II (PSII), while the excess energy is nonphotochemically quenched by interaction of the PBS with the orange carotenoid protein (OCP). Here, the molecular model of the PBS-PSII-OCP supercomplex was utilized to assess the resonance energy transfer from PBS to PSII and, using the excitonic theory, the transfer from PBS to OCP. Our estimates show that the effective energy migration from PBS to PSII is realized due to the existence of several transfer pathways from phycobilin chromophores of the PBS to the neighboring antennal chlorophyll molecules of the PSII. At the same time, the single binding site of photoactivated OCP and the PBS is sufficient to realize the quenching.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.13709DOI Listing

Publication Analysis

Top Keywords

energy migration
8
orange carotenoid
8
carotenoid protein
8
transfer pbs
8
pbs psii
8
pbs
7
energy
5
rates pathways
4
pathways energy
4
migration phycobilisome
4

Similar Publications

RFC3 Knockdown Decreases Cervical Cancer Cell Proliferation, Migration and Invasion.

Cancer Genomics Proteomics

December 2024

Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea

Background/aim: Replication factor C subunit 3 (RFC3) is a critical component of the replication factor C complex, which is essential for DNA replication and repair. Recent studies have highlighted the RFC3's significance in various cancer types. Herein, we aimed to elucidate its biological role in cervical cancer.

View Article and Find Full Text PDF

Insight into a multifunctional potassium channel Kv1.3 and its novel implication in chronic kidney disease.

Life Sci

December 2024

Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia. Electronic address:

Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.

View Article and Find Full Text PDF

Studies on Morphological Evolution of Gravure-Printed ZnO Thin Films Induced by Low-Temperature Vapor Post-Treatment.

Nanomaterials (Basel)

December 2024

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.

In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.

View Article and Find Full Text PDF

Identification of promising cancer target proteins of major sesquiterpene lactones from spp.

J Biomol Struct Dyn

December 2024

Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand.

The potential sesquiterpene lactone groups from the Vernonia genus; namely vernolide-A, vernolide-B, and vernodalin, have been reported for anticancer effects by downregulating cancer promoter proteins. Nevertheless, prior investigations have failed to identify the target proteins that are associated with the compounds' actions. Subsequently, the present investigation attempts to identify the target proteins associated with cancer.

View Article and Find Full Text PDF

Magnetic Field-Induced Control of Crystal Orientation in Porous CuNi Films for Enhanced Electrocatalytic Hydrogen Evolution.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China.

Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!