A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An NIR-responsive mesoporous silica nanosystem for synergetic photothermal-immunoenhancement therapy of hepatocellular carcinoma. | LitMetric

To create a more precise, efficient imaging and therapeutic strategy is a big challenge for the current treatment of hepatocellular carcinoma (HCC). Photothermal therapy (PTT) has attracted enormous attention due to its non-invasive property and precise spatial and temporal control. Here, we developed a strategy to realize superior imaging performance and treatment, utilizing an indocyanine green (ICG) and sorafenib (S) co-loaded mesoporous silica nanosystem for synergetic PTT/immuno-enhanced therapy. We proved that (ICG+S)@mSiO could be easily endocytosed by H22 cells, carried out outstanding real-time fluorescence imaging, and enhanced cytotoxicity abilities by near-infrared radiation (NIR) in vitro. Moreover, (ICG+S)@mSiO also had excellent fluorescence imaging ability, displayed a remarkable photothermal tumor killing effect and immune enhancement capability under 808 nm irradiation in an H22 tumor-bearing mice model, without apparent adverse effects in other organs. This study provides a new strategy for the development of a PTT/immuno-enhanced synergistic theranostic nanosystem of HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb01891cDOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
silica nanosystem
8
nanosystem synergetic
8
hepatocellular carcinoma
8
fluorescence imaging
8
nir-responsive mesoporous
4
synergetic photothermal-immunoenhancement
4
photothermal-immunoenhancement therapy
4
therapy hepatocellular
4
carcinoma create
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!