Although intrinsically disordered protein regions (IDPRs) are commonly engaged in promiscuous protein-protein interactions (PPIs), using them as drug targets is challenging due to their extreme structural flexibility. We report a rational discovery of inhibitors targeting an IDPR of MBD2 that undergoes disorder-to-order transition upon PPI and is critical for the regulation of the Mi-2/NuRD chromatin remodeling complex (CRC). Computational biology was essential for identifying target site, searching for promising leads, and assessing their binding feasibility and off-target probability. Molecular action of selected leads inhibiting the targeted PPI of MBD2 was validated in vitro and in cell, followed by confirming their inhibitory effects on the epithelial-mesenchymal transition of various cancer cells. Identified lead compounds appeared to potently inhibit cancer metastasis in a murine xenograft tumor model. These results constitute a pioneering example of rationally discovered IDPR-targeting agents and suggest Mi-2/NuRD CRC and/or MBD2 as a promising target for treating cancer metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867884 | PMC |
http://dx.doi.org/10.1126/sciadv.aav9810 | DOI Listing |
Molecules
December 2024
School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China.
Oxazoles are important five-membered heterocycles that contain both nitrogen and oxygen atoms. Due to their wide range of biological activities, many oxazoles demonstrate potential for extensive application in various fields, including medicinal chemistry. Trifluoromethyl carbinol, an important pharmacophore, contains both trifluoromethyl and hydroxyl groups and is common in molecules with important biological activities.
View Article and Find Full Text PDFMAbs
December 2025
Department of Oncology, Novartis Biomedical Research, Cambridge, MA, USA.
P-cadherin (pCAD) and LI-cadherin (CDH17) are cell-surface proteins belonging to the cadherin superfamily that are both highly expressed in colorectal cancer. This co-expression profile presents a novel and attractive opportunity for a dual targeting approach using an antibody-drug conjugate (ADC). In this study, we used a unique avidity-driven screening approach to generate pCAD x CDH17 bispecific antibodies that selectively target cells expressing both antigens over cells expressing only pCAD or only CDH17.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratory of Cheminformatics, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia 74605-170, Brazil.
Neuro Oncol
January 2025
Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen; Tübingen, Germany.
Background: Registered systemic treatment options for glioblastoma patients are limited. The phase II REGOMA trial suggested an improvement of median overall survival in progressive glioblastoma by the multi-tyrosine kinase inhibitor regorafenib. This has not been confirmed by GBM AGILE.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China. Electronic address:
Molecular glue degraders (MGDs) represent a unique class of targeted protein degradation (TPD) modalities. By facilitating protein-protein interactions between E3 ubiquitin ligases and neo-substrates, MGDs offer a novel approach to target previously undruggable or insufficiently drugged disease-causing proteins. Here, we present an overview of recently reported MGDs, highlighting their diverse mechanisms, and we discuss mechanism-based strategies to discover new MGDs and neo-substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!