In this study, a Q-switch pumped supercontinuum laser (QS-SCL) is used as a light source for imaging via ultrahigh-resolution optical coherence tomography and angiography (UHR-OCT/OCTA). For this purpose, an OCT system based on a spectral-domain detection scheme is constructed, and a spectrometer with a spectral range of 635 - 875 nm is designed. The effective full-width at half maximum of spectrum covers 150 nm, and the corresponding axial and transverse resolutions are 2 and 10 µm in air, respectively. The relative intensity noise of the QS-SCL and mode-locked SCL is quantitatively compared. Furthermore, a special processing algorithm is developed to eliminate the intrinsic noise of QS-SCL. This work demonstrates that QS-SCLs can effectively reduce the cost and size of UHR-OCT/OCTA instruments, making clinical applications feasible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865110 | PMC |
http://dx.doi.org/10.1364/BOE.10.005687 | DOI Listing |
Nano Lett
November 2024
Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350116, China.
With the development of near-eye displays, the demands for display resolution and performance are increasing. Quantum dot performance is virtually independent of pixel size, making it an efficient way to display ultrahigh resolution. However, the low efficiency of high-resolution quantum dot devices has been an urgent technical bottleneck to be solved.
View Article and Find Full Text PDFVortex beams carrying orbital angular momentum (OAM) offer a solution for enhancing spatial degrees of freedom, particularly in conjunction with wavelength division multiplexing, which can significantly boost data capacity for optical communication. Addressing the increasing demand for high information-carrying capacity, we present a dynamically tunable OAM laser source in this study. We demonstrate a ring-cavity vortex fiber laser employing intra-cavity mode conversion through a helically twisted high-absorption few-mode erbium-doped fiber (HA-FM-EDF).
View Article and Find Full Text PDFmedRxiv
September 2024
Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
Purpose: To evaluate outer retinal organization in normal subjects and those using hydroxychloroquine (HCQ) with ultrahigh resolution visible light optical coherence tomography (VIS-OCT).
Methods: Forty eyes of 22 adult subjects were recruited from a tertiary care retina practice including controls (20 eyes, 12 subjects, mean age 40±22yrs, mean logMAR BCVA 0.19, 90% female) and subjects with a history of HCQ use (20 eyes, 10 subjects, mean age 62±17yrs, mean logMAR BCVA 0.
Talanta
January 2025
Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, 518038, China. Electronic address:
This study addresses the critical need for high purity chiral molecules in biological systems by overcoming the challenges associated with the quantitative detection of chiral molecules and their enantiomeric mixtures. We developed an innovative detection approach that leverages the two-dimensional information gleaned from natural optical rotation (NOR) and Faraday optical rotation (FOR) under magnetic fields in chiral molecules, combined with an ultrahigh-resolution weak measurement sensor. This novel weak measurement system achieves unparalleled accuracy in detecting spin angles, with a precision of 1.
View Article and Find Full Text PDFAnal Chem
August 2024
Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstan ́ców Warszawy Ave., Rzeszów 35-959. Poland.
The laser ablation remote atmospheric pressure photoionization/chemical ionization (LARAPPI/CI) platform coupled to an ultrahigh resolution quadrupole-time-of-flight (QToF) mass spectrometer was developed and employed for the first direct three-dimensional (3D) mass spectrometry imaging (MSI) of metabolites in human and plant tissues. Our solution for 3D MSI does not require sample modification or cutting into thin slices. Ablation characteristics of an optical system based on a diffraction optical element are studied and used for voxel stacking to directly remove layers of tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!