Idiopathic pulmonary arterial hypertension is a rare and life-shortening condition often diagnosed at an advanced stage. Despite increased awareness, the delay to diagnosis remains unchanged. This study explores whether a predictive model based on healthcare resource utilisation can be used to screen large populations to identify patients at high risk of idiopathic pulmonary arterial hypertension. Hospital Episode Statistics from the National Health Service in England, providing close to full national coverage, were used as a measure of healthcare resource utilisation. Data for patients with idiopathic pulmonary arterial hypertension from the National Pulmonary Hypertension Service in Sheffield were linked to pre-diagnosis Hospital Episode Statistics records. A non-idiopathic pulmonary arterial hypertension control cohort was selected from the Hospital Episode Statistics population. Patient history was limited to ≤5 years pre-diagnosis. Information on demographics, timing/frequency of diagnoses, medical specialities visited and procedures undertaken was captured. For modelling, a bagged gradient boosting trees algorithm was used to discriminate between cohorts. Between 2008 and 2016, 709 patients with idiopathic pulmonary arterial hypertension were identified and compared with a stratified cohort of 2,812,458 patients classified as non-idiopathic pulmonary arterial hypertension with ≥1 ICD-10 coded diagnosis of relevance to idiopathic pulmonary arterial hypertension. A predictive model was developed and validated using cross-validation. The timing and frequency of the clinical speciality seen, secondary diagnoses and age were key variables driving the algorithm's performance. To identify the 100 patients at highest risk of idiopathic pulmonary arterial hypertension, 969 patients would need to be screened with a specificity of 99.99% and sensitivity of 14.10% based on a prevalence of 5.5/million. The positive predictive and negative predictive values were 10.32% and 99.99%, respectively. This study highlights the potential application of artificial intelligence to readily available real-world data to screen for rare diseases such as idiopathic pulmonary arterial hypertension. This algorithm could provide low-cost screening at a population level, facilitating earlier diagnosis, improved diagnostic rates and patient outcomes. Studies to further validate this approach are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868581 | PMC |
http://dx.doi.org/10.1177/2045894019890549 | DOI Listing |
Circ Heart Fail
January 2025
Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.).
Background: Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM.
Methods: Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls.
Arterioscler Thromb Vasc Biol
January 2025
Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).
Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.
View Article and Find Full Text PDFRight ventricular heart failure (RV HF) is the leading cause of death in pulmonary arterial hypertension (PAH). Relevance of the low-risk status assessment using available diagnostic tools requires a reliable confirmation. The study aimed to evaluate right ventricular perfusion and glucose metabolism using positron emission tomography (PET)/computed tomography (CT) with [13N]-ammonia and [18F]-fluorodeoxyglucose ([18F]-FDG) in 30 IPAH patients (33.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Hand and Microsurgery, Peking University Shenzhen Hospital, Shenzhen, China.
Necrotising soft tissue infections (NSTIs) are one of the most challenging and severe forms of infections. The prognosis requires accurate and aggressive diagnosis and management. In this case, we present an unexplained case of concurrence of TE events following BKA for the surgical management of NSTI.
View Article and Find Full Text PDFBreathe (Sheff)
January 2025
Université Paris-Saclay, INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT), Faculté de Médecine, Le Kremlin-Bicêtre, France.
Pulmonary arterial hypertension (PAH) is a severe disorder of the pulmonary vasculature leading to right ventricular failure. This pulmonary vascular remodelling leads to increased pulmonary vascular resistance and high pulmonary arterial pressures. Despite the development of new therapies, many patients continue to experience significant morbidity and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!